Practical Solution for the Reconfiguration Problem in Electrical Distribution Networks: A Constructive Heuristic Approach
Published 2023-07-22
Keywords
- Constructive heuristic algorithm,
- Power flow solution,
- Radial and meshed distribution grids,
- Minimum current concept,
- Nodal ordering algorithm
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The problem regarding the reconfiguration of electrical distribution grids is addressed in this research through the implementation of a practical solution using a constructive heuristic algorithm. The most important characteristic of the proposed heuristic approach is its low-computation effort, given that few power flow solutions are required in order to solve the reconfiguration problem. The constructive algorithm starts its exploration of the solution space by closing all the tie lines form a fully meshed distribution network. The distribution line with the minimum current is permanently opened. A new power flow evaluation is made for the new distribution system, and the distribution line with the minimum current is opened if and only if this action does not generate isolated nodes. This procedure is repeated until the number of closed lines is equal to the number of nodes minus one, which is a condition required to maintain a radial configuration. Numerical validations in test feeders composed of 16, 33, 69, 84, 136, and 415 nodes demonstrate that the proposed constructive algorithm finds adequate solutions with minimum processing times. The proposed approach is practical for distribution companies since its implementation only requires a power flow tool for distribution networks that can deal with radial and meshed configurations.
Downloads
References
- V. Vahidinasab et al., “Overview of Electric Energy Distribution Networks Expansion Planning,” IEEE Access, vol. 8, pp. 34750–34769, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2973455
- I. Diaaeldin, S. Abdel Aleem, A. El-Rafei, A. Abdelaziz, A. F. Zobaa, “Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation,” Energies, vol. 12, no. 21, p. 4172, 2019, doi: https://doi.org/10.3390/en12214172
- H. Li, H. Cui, C. Li, “Distribution Network Power Loss Analysis Considering Uncertainties in Distributed Generations,” Sustainability, vol. 11, no. 5, p. 1311, 2019, doi: https://doi.org/10.3390/su11051311
- S. Mikulski, A. Tomczewski, “Use of Energy Storage to Reduce Transmission Losses in Meshed Power Distribution Networks,” Energies, vol. 14, no. 21, p. 7304, 2021, doi: https://doi.org/10.3390/en14217304
- M. Z. Malik et al., “Strategic planning of renewable distributed generation in radial distribution system using advanced MOPSO method,” Energy Reports, vol. 6, pp. 2872–2886, 2020, doi: https://doi.org/10.1016/j.egyr.2020.10.002
- M. Lavorato, J. F. Franco, M. J. Rider, R. Romero, “Imposing Radiality Constraints in Distribution System Optimization Problems,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 172–180, 2012, doi: https://doi.org/10.1109/TPWRS.2011.2161349
- J. D. Pradilla-Rozo, J. A. Vega-Forero, O. D. Montoya, “Application of the Gradient-Based Metaheuristic Optimizerto Solve the Optimal Conductor Selection Problemin Three-Phase Asymmetric Distribution Networks,” Energies, vol. 16, no. 2, p. 888, 2023, doi: https://doi.org/10.3390/en16020888
- A. Zamani, T. Sidhu, A. Yazdani, “A strategy for protection coordination in radial distribution networks with distributed generators,” in IEEE PES General Meeting, 2010, pp. 1–8. doi: https://doi.org/10.1109/PES.2010.5589655
- J. Xie, C. Chen, H. Long, “A Loss Reduction Optimization Method for Distribution Network Based on Combined Power Loss Reduction Strategy,” Complexity, vol. 2021, pp. 1–13, 2021, doi: https://doi.org/10.1155/2021/9475754
- X. Wang et al., “Research on Reconfiguration of Distribution Network considering Three-Phase Unbalance,” Wirel. Commun. Mob. Comput., vol. 2022, pp. 1–12, 2022, doi: https://doi.org/10.1155/2022/9906100
- R. Sirjani, A. Rezaee Jordehi, “Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review,” Renew. Sustain. Energy Rev., vol. 77, pp. 688–694, 2017, doi: https://doi.org/10.1016/j.rser.2017.04.035
- , L. A. Gallego Pareja, O. Gómez Carmona, J. M. López-Lezama, “Optimal Placement of Capacitors, Voltage Regulators, and Distributed Generators in Electric Power Distribution Systems,” Ingeniería, vol. 25, pp. 334–354, 2020.
- L. Novoa, R. Flores, J. Brouwer, “Optimal renewable generation and battery storage sizing and siting considering local transformer limits,” Appl. Energy, vol. 256, p. 113926, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.113926
- R. Chidanandappa, T. Ananthapadmanabha, “Genetic Algorithm Based Network Reconfiguration in Distribution Systems with Multiple DGs for Time Varying Loads,” Procedia Technol., vol. 21, pp. 460–467, 2015, doi: https://doi.org/10.1016/j.protcy.2015.10.023
- T. Tran The, D. Vo Ngoc, N. Tran Anh, “Distribution Network Reconfiguration for Power Loss Reduction and Voltage Profile Improvement Using Chaotic Stochastic Fractal Search Algorithm,” Complexity, vol. 2020, pp. 1–15, 2020, doi: https://doi.org/10.1155/2020/2353901
- A. E. D. C. Tio, I. B. N. C. Cruz, “A binary formulation of SAIDI for the predictive reliability assessment of radial distribution systems with tie-lines,” in 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2013, pp. 1–6. doi: https://doi.org/10.1109/APPEEC.2013.6837235
- O. D. Montoya, W. J. Gil González, L. F. Grisales-Noreña, D. Giral, A. Molina-Cabrera, “On the optimal reconfiguration of radial AC distribution networks using an MINLP formulation: A GAMS-based approach,” Ing. e Investig., vol. 42, no. 2, p. e91192, 2021, doi: https://doi.org/10.15446/ing.investig.91192
- V. Vai, S. Suk, R. Lorm, C. Chhlonh, S. Eng, L. Bun, “Optimal Reconfiguration in Distribution Systems with Distributed Generations Based on Modified Sequential Switch Opening and Exchange,” Appl. Sci., vol. 11, no. 5, p. 2146, 2021, doi: https://doi.org/10.3390/app11052146
- J. Zhan, W. Liu, C. Y. Chung, J. Yang, “Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 2995–3007, 2020, doi: https://doi.org/10.1109/TSG.2020.2974922
- M. C. O. Borges, J. F. Franco, M. J. Rider, “Optimal Reconfiguration of Electrical Distribution Systems Using Mathematical Programming,” J. Control. Autom. Electr. Syst., vol. 25, no. 1, pp. 103–111, 2014, doi: https://doi.org/10.1007/s40313-013-0070-x
- J. Franco, M. Lavorato, M. J. Rider, R. Romero, “An efficient implementation of tabu search in feeder reconfiguration of distribution systems,” in 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 1–8. doi: https://doi.org/10.1109/PESGM.2012.6345048
- J. Olamaei, T. Niknam, S. Badali Arefi, “Distribution Feeder Reconfiguration for Loss Minimization Based on Modified Honey Bee Mating Optimization Algorithm,” Energy Procedia, vol. 14, pp. 304–311, 2012, doi: https://doi.org/10.1016/j.egypro.2011.12.934
- J. F. Franco, M. J. Rider, M. Lavorato, R. Romero, “A mixed-integer LP model for the reconfiguration of radial electric distribution systems considering distributed generation,” Electr. Power Syst. Res., vol. 97, pp. 51–60, 2013, doi: https://doi.org/10.1016/j.epsr.2012.12.005
- H. Ahmadi, J. R. Martí, “Minimum-loss network reconfiguration: A minimum spanning tree problem,” Sustain. Energy, Grids Networks, vol. 1, pp. 1–9, Mar. 2015, doi: https://doi.org/10.1016/j.segan.2014.10.001
- A. Davodi, K. Esapour, A. Zare, M.-A. Rostami, “A modified KH algorithm to solve the optimal reconfiguration problem in the presence of distributed generations,” J. Intell. & Fuzzy Syst., vol. 28, no. 1, pp. 383–391, 2015.
- I. I. Atteya, H. A. Ashour, N. Fahmi, D. Strickland, “Distribution network reconfiguration in smart grid system using modified particle swarm optimization,” in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 305–313. doi: https://doi.org/10.1109/ICRERA.2016.7884556
- D. Yodphet, A. Onlam, A. Siritaratiwat, P. Khunkitti, “Electrical distribution system reconfiguration for power loss reduction by the Salp Swarm algorithm,” Int. J. Smart Grid Clean Energy, pp. 156–163, 2019, doi: https://doi.org/10.12720/sgce.8.2.156-163
- U. Raut and S. Mishra, “Enhanced Sine–Cosine Algorithm for Optimal Planning of Distribution Network by Incorporating Network Reconfiguration and Distributed Generation,” Arab. J. Sci. Eng., vol. 46, no. 2, pp. 1029–1051, 2021, doi: https://doi.org/10.1007/s13369-020-04808-9
- A. M. Helmi, R. Carli, M. Dotoli, H. S. Ramadan, “Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 1, pp. 82–98, Jan. 2022, doi: https://doi.org/10.1109/TASE.2021.3072862
- O. Badran, S. Mekhilef, H. Mokhlis, W. Dahalan, “Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies,” Renew. Sustain. Energy Rev., vol. 73, pp. 854–867, 2017, doi: https://doi.org/10.1016/j.rser.2017.02.010
- H. Lotfi, A. A. Shojaei, V. Kouhdaragh, I. Sadegh Amiri, “The impact of feeder reconfiguration on automated distribution network with respect to resilience concept,” SN Appl. Sci., vol. 2, no. 9, p. 1590, 2020, doi: https://doi.org/10.1007/s42452-020-03429-z
- F. Sheidaei, A. Ahmarinejad, M. Tabrizian, M. Babaei, “A stochastic multi-objective optimization framework for distribution feeder reconfiguration in the presence of renewable energy sources and energy storages,” J. Energy Storage, vol. 40, p. 102775, Aug. 2021, doi: https://doi.org/10.1016/j.est.2021.102775
- O. D. Montoya, “Notes on the Dimension of the Solution Space in Typical Electrical Engineering Optimization Problems,” Ingeniería, vol. 27, no. 2, p. e19310, 2022, doi: https://doi.org/10.14483/23448393.19310
- O. D. Montoya, W. Gil-González, “On the numerical analysis based on successive approximations for power flow problems in AC distribution systems,” Electr. Power Syst. Res., vol. 187, p. 106454, 2020.
- A. Garces, L. Rodriguez-Garcia, “An Approach for Nodal Admittance Matrix Real-Time Estimation on DC Microgrids,” in 2019 IEEE Green Technologies Conference(GreenTech), Apr. 2019, pp. 1–4. doi: https://doi.org/10.1109/GreenTech.2019.8767140
- T. Shen, Y. Li, J. Xiang, “A Graph-Based Power Flow Method for Balanced Distribution Systems,” Energies, vol. 11, no. 3, p. 511, 2018, doi: https://doi.org/10.3390/en11030511
- S. Ouali, A. Cherkaoui, “An Improved Backward/Forward Sweep Power Flow Method Based on a New Network Information Organization for Radial Distribution Systems,” J. Electr. Comput. Eng., vol. 2020, pp. 1–11, Jan. 2020, doi: https://doi.org/10.1155/2020/5643410
- M. Sedighizadeh, M. Dakhem, M. Sarvi, H. H. Kordkheili, “Optimal reconfiguration and capacitor placement for power loss reduction of distribution system using improved binary particle swarm optimization,” Int. J. Energy Environ. Eng., vol. 5, no. 1, p. 73, 2014, doi: https://doi.org/10.1007/s40095-014-0073-9