Vol. 21 Núm. 3 (2022): Revista UIS Ingenierías
Artículos

Turbinas hidrocinéticas tipo propela: una alternativa para la generación de energía eléctrica

Fredys Romero-Menco
Universidad de Antioquia
Ainhoa Rubio-Clemente
Universidad de Antioquia
Edwin Chica
Universidad de Antioquia

Publicado 2022-09-30

Palabras clave

  • algoritmo genético,
  • arrastre,
  • cavitación,
  • eficiencia,
  • energía renovable,
  • metodología de diseño,
  • modelos de turbulencia,
  • optimización,
  • propelas,
  • simulación computacional,
  • sustentación
  • ...Más
    Menos

Cómo citar

Romero-Menco, F., Rubio-Clemente , A. ., & Chica , E. . (2022). Turbinas hidrocinéticas tipo propela: una alternativa para la generación de energía eléctrica. Revista UIS Ingenierías, 21(3), 111–134. https://doi.org/10.18273/revuin.v21n3-2022010

Resumen

Las turbinas hidrocinéticas son dispositivos que transforman la energía cinética del flujo del agua en energía eléctrica mediante el uso de generadores eléctricos. Las propelas son dispositivos utilizados para proporcionar movimiento a los vehículos que se desplazan en medio acuático. En este trabajo, se presentan los avances de mayor relevancia en el diseño de turbinas hidrocinéticas tipo propela y propelas marinas. Se considera pertinente el desarrollo de una turbina hidrocinética en la cual se incorporen características geométricas propias de las propelas, con el fin de analizar la influencia de estos factores en el desempeño de la operación como turbina, razón por la cual adicionalmente se propone una metodología para el diseño de turbinas de este tipo. Se espera que la turbina hidrocinética tipo propela tenga un mejor desempeño en comparación con las turbinas hidrocinéticas tradicionales, de forma que contribuya con la implementación y mejoramiento de estas tecnologías para el aprovechamiento del recurso hidrocinético.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. N. R. Maldar, C. Y. Ng, E. Oguz, “A review of the optimization studies for savonius turbine considering hydrokinetic applications,” Energy Conversion and Management, vol. 226, p. 113495, 2020, doi: https://doi.org/10.1016/j.enconman.2020.113495
  2. I. International Energy Agency. (2021) World energy balances. [Online]. Available: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energy%20supply&indicator=TESbySource
  3. L. F. Silva, M. Santosh, M. Schindler, J. Gasparotto, G. L. Dotto, M. L. Oliveira, M. F. Hochella Jr, “Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective,” Gondwana Research, vol. 92, pp. 184-201, 2021, doi: https://doi.org/10.1016/j.gr.2020.12.026
  4. A. P. Jacobsen, R. S. Blumenthal, “Cardiovascular disease is the condition, air pollution the risk factor, fossil fuel combustion the cause,” Journal of the American College of Cardiology, vol. 79, no. 2, pp. e131-e131, 2022, doi: https://doi.org/10.1016/j.jacc.2021.09.1386
  5. L. T. Contreras, O. D. López, S. Lain, “Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine,” Energies, vol. 11, no. 11, p. 3151, 2018, doi: https://doi.org/10.3390/en11113151
  6. M. B. Salleh, N. M. Kamaruddin, Z. Mohamed-Kassim, “Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in malaysia,” Sustainable Energy Technologies and Assessments, vol. 36, p. 100554, 2019, doi: https://doi.org/10.1016/j.seta.2019.100554
  7. R. Ioannidis, D. Koutsoyiannis, “A review of land use, visibility and public perception of renewable energy in the context of landscape impact,” Applied Energy, vol. 276, p. 115367, 2020, doi: https://doi.org/10.1016/j.apenergy.2020.115367
  8. G. T. Chala, M. Ma’Arof, R. Sharma, “Trends in an increased dependence towards hydropower energy utilization—a short review,” Cogent Engineering, vol. 6, no. 1, p. 1631541, 2019.
  9. J. Xu, T. Ni, B. Zheng, “Hydropower development trends from a technological paradigm perspective,” Energy Conversion and Management, vol. 90, pp. 195-206, 2015.
  10. C. M. Niebuhr, M. van Dijk, V. S. Neary, J. N. Bhagwan, “A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential,” Renewable and Sustainable Energy Reviews, vol. 113, p. 109240, 2019.
  11. Y. A. Cengel, Fluid mechanics. Tata McGrawHill Education, 2010.
  12. E. Chica, A. Rubio-Clemente, Design of zero head turbines for power generation. IntechOpen, 2017.
  13. J. Carlton, Marine propellers and propulsion. Butterworth-Heinemann, 2018.
  14. N. D. Laws, B. P. Epps, “Hydrokinetic energy conversion: Technology, research, and outlook,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1245-1259, 2016.
  15. R. Bastianon, “Cálculo y diseño de la hélice óptima para turbinas eólicas,” Buenos Aires, 2008.
  16. P. F. Díez, “Turbinas hidráulicas,” Departamento de Ingeniería Eléctrica y Energética. Universidad de Cantabria, España, p. 8, 1996.
  17. V. Bertram, Practical ship hydrodynamics. Elsevier, 2011.
  18. R. Hantoro, E. Septyaningrum, “Novel design of a vertical axis hydrokinetic turbinestraight-blade cascaded (vaht-sbc): Experimental and numerical simulation.” Journal of Engineering & Technological Sciences, vol. 50, no. 1, 2018.
  19. E. Septyaningrum, R. Hantoro, I. Utama, J. Prananda, G. Nugroho, A. Mahmasani, N. Satwika, “Performance analysis of multi-row vertical axis hydrokinetic turbine–straight blade cascaded (vaht-sbc) turbines array,” Journal of Mechanical Engineering and Sciences, vol. 13, no. 3, pp. 5665-5688, 2019.
  20. S. Eriksson, H. Bernhoff, M. Leijon, “Evaluation of different turbine concepts for wind power,” Renewable and sustainable energy reviews, vol. 12, no. 5, pp. 1419-1434, 2008.
  21. P. J. Schubel and R. J. Crossley, “Wind turbine blade design,” Energies, vol. 5, no. 9, pp. 3425-3449, 2012.
  22. S. Laín, L. Contreras, and O. López, “A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 9, pp. 1-24, 2019.
  23. D. Anderson, I. Graham, B. Williams, “Aerodynamics,” in Flight and Motion. Routledge, 2015, p. 93.
  24. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind energy handbook. Wiley Online Library, 2001, vol. 2.
  25. M. O. Hansen, Aerodynamics of wind turbines. Routledge, 2015.
  26. M. Huleihil, G. Mazor, “Wind turbine power: The betz limit and beyond,” in Advances in wind power. IntechOpen, 2012.
  27. L. Birk, Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion. John Wiley & Sons, 2019.
  28. E. Benini, “Significance of blade element theory in performance prediction of marine propellers,” Ocean Engineering, vol. 31, no. 8-9, pp. 957–974, 2004.
  29. M. Drela, M. B. Giles, “Viscous-inviscid analysis of transonic and low reynolds number airfoils,” AIAA journal, vol. 25, no. 10, pp. 1347-1355, 1987.
  30. J. P. Breslin and P. Andersen, Hydrodynamics of ship propellers. Cambridge University Press, 1996, vol. 3.
  31. Y.-C. Kim, T.-W. Kim, S. Pyo, J.-C. Suh, “Design of propeller geometry using streamline adapted blade sections,” Journal of marine science and technology, vol. 14, no. 2, pp. 161-170, 2009.
  32. A. Hayati, S. Hashemi, M. Shams, “A study on the effect of the rake angle on the performance of marine propellers,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 226, no. 4, pp. 940-955, 2012.
  33. D. Cebrián, J. Ortega-Casanova, R. Fernández-Feria, “Lift and drag characteristicsof a cascade of flat plates in a configurationof interest for a tidal current energy converter: Numerical simulations analysis,” Journal of Renewable and Sustainable Energy, vol. 5, no. 4, p. 043114, 2013.
  34. A. Pelletier, T. J. Mueller, “Low Reynolds number aerodynamics of low-aspectratio, thin/flat/cambered-plate wings,” Journal of aircraft, vol. 37, no. 5, pp. 825-832, 2000.
  35. W. Schleicher, J. Riglin, A. Oztekin, “Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design,” Renewable Energy, vol. 76, pp. 234-241, 2015.
  36. J. Riglin, W. C. Schleicher, A. Oztekin, “Numerical analysis of a shrouded microhydrokinetic turbine unit,” Journal of Hydraulic Research, vol. 53, no. 4, pp. 525-531, 2015.
  37. J. Riglin, W. C. Schleicher, I.-H. Liu, A. Oztekin, “Characterization of a microhydrokinetic turbine in close proximity to the free surface,” Ocean Engineering, vol. 110, pp. 270-280, 2015.
  38. J. Riglin, C. Daskiran, J. Jonas, W. C. Schleicher, A. Oztekin, “Hydrokinetic turbine array characteristics for river applications and spatially restricted flows,” Renewable energy, vol. 97, pp. 274-283, 2016.
  39. C.-J. Bai, W.-C. Wang, P.-W. Chen, W.-T. Chong, “System integration of the horizontalaxis wind turbine: The design of turbine blades with an axial-flux permanent magnet generator,” Energies, vol. 7, no. 11, pp. 7773-7793, 2014.
  40. A. Bahaj, A. Molland, J. Chaplin, W. Batten, “Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank,” Renewable energy, vol. 32, no. 3, pp. 407-426, 2007.
  41. B. I. Favacho, J. R. P. Vaz, A. L. A. Mesquita, F. Lopes, A. L. S. Moreira, N. S. Soeiro, and O. F. L. d. Rocha, “Contribution to the marine propeller hydrodynamic design for small boats in the amazon region,” Acta Amazonica, vol. 46, no. 1, pp. 37-46, 2016.
  42. A. Rahman, M. R. Ullah, M. M. Karim, “Marine propeller design method based on lifting line theory and lifting surface correction factors,” Procedia engineering, vol. 194, pp. 174-181, 2017.
  43. P. Liu, N. Bose, K. Chen, Y. Xu, “Development and optimization of dual-mode propellers for renewable energy,” Renewable energy, vol. 119, pp. 566-576, 2018.
  44. F. Pérez-Arribas, R. Pérez-Fernández, “A bspline design model for propeller blades,” Advances in Engineering Software, vol. 118, pp. 35-44, 2018.
  45. M. M. Helal, T. M. Ahmed, A. A. Banawan, M. A. Kotb, “Numerical prediction of sheet cavitation on marine propellers using cfd simulation with transition-sensitive turbulence model,” Alexandria engineering journal, vol. 57, no. 4, pp. 3805-3815, 2018.
  46. C.-W. Chen, M. Li, “Improved hydrodynamic analysis of 3-d hydrofoil and marine propeller using the potential panel method based on b-spline scheme,” Symmetry, vol. 11, no. 2, p. 196, 2019.
  47. H. Gao, W. Zhu, Y. Liu, Y. Yan, “Effect of various winglets on the performance of marine propeller,” Applied Ocean Research, vol. 86, pp. 246-256, 2019.
  48. X. Feng, J. Lu, “Effects of balanced skew and biased skew on the cavitation characteristics and pressure fluctuations of the marine propeller,” Ocean Engineering, vol. 184, pp. 184-192, 2019.
  49. A. Arapakopoulos, R. Polichshuk, Z. Segizbayev, S. Ospanov, A. Ginnis, K. Kostas, “Parametric models for marine propellers,” Ocean Engineering, vol. 192, p. 106595, 2019.
  50. O. Erdinc, Optimization in renewable energy systems: recent perspectives. Butterworth- Heinemann, 2017.
  51. I. E. Grossmann, Global optimization in engineering design. Springer Science & Business Media, 2013, vol. 9.
  52. N. M. Nouri, S. Mohammadi, M. Zarezadeh, “Optimization of a marine contra-rotating propellers set,” Ocean Engineering, vol. 167, pp. 397-404, 2018.
  53. E. Zitzler, M. Laumanns, L. Thiele, “Spea2: Improving the strength pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.
  54. T. Weise, “Global optimization algorithmstheory and application,” Self-Published Thomas Weise, vol. 361, 2009.
  55. S. Brizzolara, S. Gaggero, A. Grasso, “Parametric optimization of open and ducted propellers,” in to appear on the Proceedings of the SNAME Propellers and Shafting Symposium, 2009.
  56. S. Mirjalili, A. Lewis, S. A. M. Mirjalili, “Multi-objective optimisation of marine propellers,” Procedia Computer Science, vol. 51, pp. 2247-2256, 2015.
  57. A. Ebrahimi, M. S. Seif, and A. Nouri-Borujerdi, “Hydro-acoustic and hydrodynamic optimization of a marine propeller using genetic algorithm, boundary element method, and fw-h equations,” Journal of Marine Science and Engineering, vol. 7, no. 9, p. 321, 2019.