Vol. 22 Núm. 3 (2023): Revista UIS Ingenierías
Artículos

Implementación de una turbina hidráulica de vórtice de agua gravitacional en Colombia: potencial hidroeléctrico y perspectivas

Laura Velásquez
Universidad de Antioquia
Ainhoa Rubio-Clemente
Universidad de Antioquia
Alejandro Posada
Institución Universitaria Pascual Bravo
Edwin Chica
Universidad de Antioquia

Publicado 2023-07-06

Palabras clave

  • Colombia,
  • consumo de electricidad,
  • energía,
  • impacto medioambiental,
  • combustible fósil,
  • Turbina hidráulica de vórtice de agua gravitacional,
  • generación hidroeléctrica,
  • recursos naturales,
  • energía renovable,
  • pequeña central hidroeléctrica
  • ...Más
    Menos

Cómo citar

Velásquez, L., Rubio-Clemente , A. ., Posada , A. ., & Chica , E. (2023). Implementación de una turbina hidráulica de vórtice de agua gravitacional en Colombia: potencial hidroeléctrico y perspectivas. Revista UIS Ingenierías, 22(3), 39–54. https://doi.org/10.18273/revuin.v22n3-2023004

Resumen

La disponibilidad de la energía ha cambiado a la humanidad en los últimos siglos. Los primeros tipos de energía utilizados por la humanidad fueron las energías renovables: la biomasa, el viento y el agua. Pero, desde hace dos siglos, los combustibles fósiles han sido los protagonistas del consumo energético mundial. Sin embargo, recientemente se ha tomado conciencia de la gran dependencia energética de un recurso finito, concentrado geográficamente en unos pocos países, que además de degradar el medio ambiente, está sujeto a grandes fluctuaciones de precio. De las energías renovables, la hidroelectricidad es actualmente la fuente más importante de la matriz eléctrica latinoamericana. Las proyecciones actuales sugieren que la capacidad hidroeléctrica instalada seguirá creciendo para satisfacer la futura demanda de electricidad. Los nuevos diseños de turbinas, como las turbinas hidráulicas de vórtice de agua gravitacional, han llamado la atención de muchos investigadores debido a su fácil instalación y mantenimiento, y su bajo impacto ambiental. Este trabajo presenta el potencial hidroeléctrico y las perspectivas de implementación de este tipo de turbinas en el contexto colombiano, así como una descripción general del panorama actual del sistema energético colombiano.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. E. F. Moran, People and nature: An introduction to human ecological relations. John Wiley & Sons, 2016.
  2. T. Van de Graaf, B. K. Sovacool, Global energy politics. John Wiley & Sons, 2020.
  3. I. Stoddard et al., “Three Decades of Climate Mitigation: Why Haven’t We Bent the Global Emissions Curve,” Annu. Rev. Environ. Resour., vol. 46, no. 1, pp. 653–689, Oct. 2021, doi: https://doi.org/10.1146/annurev-environ-012220-011104
  4. L. Velásquez, E. Chica, J. Posada-Montoya, “Advances in the Development of Gravitational Water Vortex Hydraulic Turbines,” J. Eng. Sci. Technol. Rev., vol. 14, pp. 1–14, 2021, doi: https://doi.org/10.25103/jestr.143.01
  5. A. Tesfaye, V. Ancha, G. Tibba, “Numerical analysis of the effect of runner-to-basin diameter ratio on the performance of gravitational water vortex turbine in a scroll basin,” Int. J. Energy Environ. Eng., vol. 13, pp. 1317–1333, 2022, doi: https://doi.org/10.1007/s40095-022-00495-4
  6. A. B. Timilsina, S. Mulligan, T. R. Bajracharya, “Water vortex hydropower technology: a state-of-the-art review of developmental trends,” Clean Technol. Environ. Policy, vol. 20, pp. 1737–1760, 2018.
  7. V. J. Alzamora Guzmán, J. A. Glasscock, “Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitational vortex hydropower system,” Water Sci. Eng., vol. 14, no. 1, pp. 72–79, Mar. 2021, doi: https://doi.org/10.1016/j.wse.2021.03.004
  8. J. A. Aguilera Folgueiras, “Fuentes de energía y Protocolo de Kioto en la evolución del sistema eléctrico español,” Jul. 2012. [Online]. Available: http://hdl.handle.net/10651/13052
  9. J. A. J. Gowlett, “The discovery of fire by humans: a long and convoluted process,” Philos. Trans. R. Soc. B Biol. Sci., vol. 371, no. 1696, p. 20150164, 2016, doi: https://doi.org/10.1098/rstb.2015.0164
  10. G. A. Tokaty, A History and Philosophy of Fluid Mechanics. Dover, 1994. [Online]. Available: https://books.google.com.co/books?id=ZmgJDgkDx8UC
  11. R. L. Hills, Power from Wind: A History of Windmill Technology. Cambridge University Press, 1996. [Online]. Available: https://books.google.com.co/books?id=FoVkfkBV1%5C_8C
  12. J. LANGDON, “Water-mills and windmills in the west midlands, 1086-1500,” Econ. Hist. Rev., vol. 44, no. 3, pp. 424–444, 1991, doi: https://doi.org/10.1111/j.1468-0289.1991.tb01272.x
  13. A. Vázquez Pérez, M. Rodriguez Gamez, C. Gustavo, V. Viteri, A. Vélez Quiroz, “Community Power as a Driving Force for Sustainable Local Development,” Int. Res. J. Eng. IT Sci. Res., vol. 3, pp. 7–17, 2017.
  14. G. Parker, Global Crisis: War, Climate Change, & Catastrophe in the Seventeenth Century. Yale University Press, 2013. [Online]. Available: https://books.google.com.co/books?id=gjdDP15N4FkC
  15. S. Liu et al., “Coal-fuelled crucible lead-silver smelting in 12th-13th century China: A technological innovation in the age of deforestation,” J. Archaeol. Sci., vol. 104, pp. 75–84, 2019, doi: https://doi.org/10.1016/j.jas.2019.01.004
  16. J. Dodson et al., “Use of coal in the Bronze Age in China,” The Holocene, vol. 24, pp. 525–530, 2014, doi: https://doi.org/10.1177/0959683614523155
  17. H. W. Dickinson, A Short History of the Steam Engine. Cambridge University Press, 2011. [Online]. Available: https://books.google.com.co/books?id=8yug4QCWwywC
  18. J. A. Montagna, “The Industrial Revolution,” Curric. Units, vol. 2, 1981.
  19. M. Piccolino, “The bicentennial of the Voltaic battery (1800–2000): the artificial electric organ,” Trends Neurosci., vol. 23, no. 4, pp. 147–151, Apr. 2000, doi: https://doi.org/10.1016/S0166-2236(99)01544-1
  20. E. R. Laithwaite, “The influence of Michael Faraday on power engineering,” Power Eng. J., vol. 5, no. 5, p. 209, 1991, doi: https://doi.org/10.1049/pe:19910043
  21. G. Adair, Thomas Alva Edison: Inventing the Electric Age. Oxford University Press, USA, 1996. [Online]. Available: https://books.google.com.co/books?id=hEffwEC7hGsC
  22. J. Lienhard, “A Century of Innovation: Twenty Engineering Achievements that Transformed Our Lives A Century of Innovation: Twenty Engineering Achievements that Transformed Our Lives, George Constable and Bob Somerville Joseph Henry Press, Washington, DC, 2003. $45.00,” Phys. Today, vol. 57, no. 12, pp. 63–63, 2004, doi: https://doi.org/10.1063/1.1878337
  23. S. Raţiu, “The history of the internal combustion engine,” Ann. Fac. Eng. Hunedoara, vol. 1, pp. 145–148, 2003.
  24. J. J. Flink, The Automobile Age. MIT Press, 1990. [Online]. Available: https://books.google.com.co/books?id=7WtKH-9ha4MC
  25. N. Armaroli, V. Balzani, Energy for a Sustainable World. Wiley, 2010. doi: https://doi.org/10.1002/9783527633593
  26. J. Mohtasham, “Review Article-Renewable Energies,” Energy Procedia, vol. 74, pp. 1289–1297, Aug. 2015, doi: https://doi.org/10.1016/j.egypro.2015.07.774
  27. M. Taylor, et al, “Energy subsidies: Evolution in the global energy transformation to 2050”.
  28. T. Ahmad, D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973–1991, 2020, doi: https://doi.org/10.1016/j.egyr.2020.07.020
  29. British Petroleum, “Bp full report–statistical review of world energy 2021.” 2021. [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf
  30. S. Arango-Aramburo, J. P. Ríos-Ocampo, E. R. Larsen, “Examining the decreasing share of renewable energy amid growing thermal capacity: The case of South America,” Renew. Sustain. Energy Rev., vol. 119, p. 109648, 2020, doi: https://doi.org/10.1016/j.rser.2019.109648
  31. S. Carrizo and S. Velut, “Energy transitions and regional integration in South America,” in Territorial planning and La Plata Basin borders, Editora Letra1, 2018, pp. 167–187. doi: https://doi.org/10.21826/9788563800350-06
  32. S. Zapata, M. Castañeda, A. Aristizábal, I. Dyner, “Renewables for supporting supply adequacy in Colombia,” Energy, vol. 239, p. 122157, 2021, doi: https://doi.org/10.1016/j.energy.2021.122157
  33. A. Cáceres, P. Jaramillo, H. Matthews, C. Samaras, B. Nijssen, “Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios,” Energy Sustain. Dev., vol. 61, pp. 217–229, 2021, doi: https://doi.org/10.1016/j.esd.2021.02.006
  34. T. Santos, “Regional energy security goes South: Examining energy integration in South America,” Energy Res. Soc. Sci., vol. 76, p. 102050, 2021, doi: https://doi.org/10.1016/j.erss.2021.102050
  35. S. N. Abdul Latif et al., “The Trend and Status of Energy Resources and Greenhouse Gas Emissions in the Malaysia Power Generation Mix,” Energies, vol. 14, no. 8, p. 2200, 2021, doi: https://doi.org/10.3390/en14082200
  36. Hannah Ritchie and Pablo Rosado, “Energy: Key Charts,” 2021. https://ourworldindata.org/energy-key-charts
  37. O. A. C. Hoes, L. J. J. Meijer, R. J. van der Ent, N. C. van de Giesen, “Systematic high-resolution assessment of global hydropower potential,” PLoS One, vol. 12, no. 2, p. e0171844, 2017, doi: https://doi.org/10.1371/journal.pone.0171844
  38. V. K. Singh, S. K. Singal, “Operation of hydro power plants-a review,” Renew. Sustain. Energy Rev., vol. 69, pp. 610–619, 2017, doi: https://doi.org/10.1016/j.rser.2016.11.169
  39. T. S. Kishore, E. R. Patro, V. S. K. V. Harish, A. T. Haghighi, “A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects,” Energies, vol. 14, no. 10, p. 2882, May 2021, doi: https://doi.org/10.3390/en14102882
  40. J. Górecki, E. Płoszaj, “Cost risk of construction of small hydroelectric power plants,” MATEC Web Conf., vol. 262, p. 07004, 2019, doi: https://doi.org/10.1051/matecconf/201926207004
  41. H. Jangavar, Y. Noorollahi, A. Emami Meybodi, “Economic and Environmental Analysis of the Small Hydropower Plants Development,” Iran. J. Ecohydrol., vol. 4, no. 4, pp. 1255–1268, 2017, doi: https://doi.org/10.22059/ije.2017.63271
  42. J. Chen, A. Engeda, “Standard Module Hydraulic Technology: A Novel Geometrical Design Methodology and Analysis for A Low-Head Hydraulic Turbine System, Part I: General design methodology and basic geometry considerations.,” Energy, vol. 196, p. 117151, 2020, doi: https://doi.org/10.1016/j.energy.2020.117151
  43. S. M. Puentes, A. H. Q. Duque, “Formulación de estrategias para la implementación y fomento de fuentes no convencionales de energías renovables en zonas no interconectadas de Colombia,” 2021.
  44. S. de S. P. Domiciliarios, “Zonas no interconectadas ZNI, diagnóstico de la prestación del servicio de energía eléctrica 2017,” p. 43, 2017.
  45. S. de S. P. Domiciliarios, “Zonas no interconectadas– ZNI informe sectorial de la prestación del servicio de energía eléctrica 2021,” p. 41, 2021.
  46. J. Carlos Rojas, “El mapa de 1.710 poblados que aún se alumbran con velas en Colombia,” El tiempo, 2019. [Online]. Available: https://www.eltiempo.com/colombia/otras-ciudades/los-poblados-que-aun-no-tienen-energia-electrica-en-colombia-324980
  47. V. Guzmán, J. Glasscock, F. Whitehouse, “Design and construction of an off-grid gravitational vortex hydropower plant: A case study in rural Peru,” Sustain. Energy Technol., vol. 35, pp. 131–138, 2019, doi: https://doi.org/10.1016/j.seta.2019.06.004
  48. D. S. Edirisinghe, H. S. Yang, S. D. G. S. P. Gunawardane, Y. H. Lee, “Enhancing the performance of gravitational water vortex turbine by flow simulation analysis,” Renew. Energy, vol. 194, pp. 163–180, 2022, doi: https://doi.org/10.1016/j.renene.2022.05.053
  49. L. Velásquez, A. Posada, E. Chica, “Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology,” Renew. Energy, vol. 187, pp. 508–521, 2022, doi: https://doi.org/10.1016/j.renene.2022.01.113
  50. Kourispower, “Waterway embodiment of KCT,” 2021. https://www.kourispower.com/technology/
  51. I. Adejumobi, D. Shobayo, “Optimal Selection of Hydraulic Turbines for Small Hydro Electric Power Generation – A Case Study of Opeki River, South Western Nigeria,” Niger. J. Technol., vol. 34, p. 530, 2015, doi: https://doi.org/10.4314/njt.v34i3.15
  52. D. Y. Goswami, F. Kreith, Eds., Energy Conversion. CRC Press. 2007, doi: https://doi.org/10.1201/9781420044324
  53. XM, “Vertimientos.” https://www.xm.com.co/hidrología/vertimientos
  54. Grupo de Investigación Xué, S. D. I. Barión, “Estado de la cobertura eléctrica y las zonas no interconectadas en la región central,” 2020.
  55. M. Gamboa, F. F. Serrano, E. G. Gómez, Gustavo, “Mercados de energía en Colombia, una introducción al área.,” Sello Editor. Univ. Pamplona, 2021, [Online]. Available: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2827
  56. E. L. Gonzales Titi, P. A. Loayza Quiñones, A. M. More Dávila, V. A. R. Simeon Vega, “Propuesta de utilización del gas natural licuefactado en los camiones mineros: evaluación de beneficios,” 2019. [Online]. Available: https://hdl.handle.net/20.500.12640/1737
  57. H. Duan, Y. Liu, G. Wang, “A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting,” Energy, vol. 251, p. 123968, 2022, doi: https://doi.org/10.1016/j.energy.2022.123968
  58. Ò. Bosede Comfort, H. Okodua, M. Oladosun, A. Asaleye, “Human capital and poverty reduction in OPEC member-countries,” Heliyon, vol. 5, p. e02279, 2019, doi: https://doi.org/10.1016/j.heliyon.2019.e02279
  59. Expansion, “Precio del petróleo opep por barril,” 2022. https://datosmacro.expansion.com/materias-primas/opec?anio=2022
  60. C. Zou et al., “The role of new energy in carbon neutral,” Pet. Explor. Dev., vol. 48, no. 2, pp. 480–491, 2021, doi: https://doi.org/10.1016/S1876-3804(21)60039-3
  61. H. Nautiyal, V. Goel, “Sustainability assessment of hydropower projects,” J. Clean. Prod., vol. 265, p. 121661, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121661
  62. UPME, “Plan energético nacional Colombia: ideario energético 2050,” 2015.
  63. M. Kumar, “Social, Economic, and Environmental Impacts of Renewable Energy Resources,” in Wind Solar Hybrid Renewable Energy System, IntechOpen, 2020. doi: https://doi.org/10.5772/intechopen.89494
  64. M. Abdel-Basset, A. Gamal, R. K. Chakrabortty, M. J. Ryan, “Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study,” Renew. Energy, vol. 168, pp. 1073–1095, 2021, doi: https://doi.org/10.1016/j.renene.2020.12.124
  65. C. Li et al., “Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus,” Sci. Rep., vol. 12, no. 1, p. 5170, 2022, doi: https://doi.org/10.1038/s41598-022-08788-8
  66. J. A. Vélez Henao, et al., “Evaluación de las transferencias del sector eléctrico. El caso de San Carlos y el Oriente Antioqueño,” Rev. Ing. Univ. Medellín, vol. 14, pp. 147–161, 2015.
  67. Y. Lu, C. Shang, “The environmental impact of the three gorges project and the countermeasures,” Front. Eng. Manag., pp. 120–128, 2014.
  68. H. Zhenli, B. Wu, Three Gorges Dam: Environmental Monitoring Network and Practice, 2018, pp. 1–14. doi: https://doi.org/10.1007/978-3-662-55302-2_1
  69. A. Kumar, Z.G. Yu, J. J. Klemeš, A. Bokhari, “A state-of-the-art review of greenhouse gas emissions from Indian hydropower reservoirs,” J. Clean. Prod., vol. 320, p. 128806, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.128806
  70. M. M. Rahman, J. H. Tan, M. T. Fadzlita, A. R. Wan Khairul Muzammil, “A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources,” IOP Conf. Ser. Mater. Sci. Eng., vol. 217, p. 012007, 2017.
  71. T. Couto, J. Olden, “Global proliferation of small hydropower plants - science and policy,” Front. Ecol. Environ., vol. 16, 2018, doi: https://doi.org/10.1002/fee.1746
  72. T. Abbasi, S. A. Abbasi, “Small hydro and the environmental implications of its extensive utilization,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2134–2143, 2011, doi: https://doi.org/10.1016/j.rser.2010.11.050
  73. E. Renovables and D. Irena, “10 argumentos a favor de las energías renovables,” 2015.
  74. A. Gómez, C. Arredondo, M. Luna, S. Villegas, J. Hernandez, “Regulating the integration of renewable energy in Colombia: Implications of law 1715 of 2014,” IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, doi: https://doi.org/10.1109/PVSC.2017.8366780
  75. J. A. Hernandez, C. A. Arredondo, D. J. Rodriguez, “Analysis of the law for the integration of non-conventional renewable energy sources (law 1715 of 2014) and its complementary decrees in Colombia,” in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2019, pp. 1695–1700, doi: https://doi.org/10.1109/PVSC40753.2019.8981233