Vol. 23 Núm. 2 (2024): Revista UIS Ingenierías
Artículos

Recomendaciones para la realización y análisis de pruebas experimentales en turbinas hidráulicas tipo Michell-Banki

Daniel Sierra-Moreno
Universidad de Antioquia
Fredys Romero-Menco
Universidad de Antioquia
Laura Isabel Velásquez-García
Universidad de Antioquia
Ainhoa Rubio-Clemente
Universidad de Antioquia
Edwin Chica
Universidad de Antioquia

Publicado 2024-06-06

Palabras clave

  • Turbina Michell-Banki,
  • caracterización experimental,
  • turbina de flujo cruzado,
  • banco hidráulico,
  • inyector,
  • eficiencia de la turbina
  • ...Más
    Menos

Cómo citar

Sierra-Moreno , D., Romero-Menco, F. ., Velásquez-García , L. I., Rubio-Clemente , A., & Chica , E. (2024). Recomendaciones para la realización y análisis de pruebas experimentales en turbinas hidráulicas tipo Michell-Banki. Revista UIS Ingenierías, 23(2), 47–70. https://doi.org/10.18273/revuin.v23n2-2024004

Resumen

En este trabajo, se realiza la caracterización experimental de una turbina Michell-Banki a escala de laboratorio y se presentan recomendaciones para un adecuado montaje experimental que permita medir las variables involucradas en la generación de energía y caracterizar la turbina de manera adecuada. El rodete de la turbina consistió en 26 álabes dispuestos simétricamente en la periferia entre dos placas circulares. La turbina diseñada fue capaz de producir hasta 100 W a una velocidad de flujo de agua y una altura de 0.009 m3/s y 0.6311 m, respectivamente. La curva de eficiencia de la turbina se determinó en un banco hidráulico mediante el uso de un sensor de torque con encoder. La máxima eficiencia de la turbina fue del 85%. Esta tecnología podría ser de gran ayuda para impulsar actividades que requieren energía eléctrica, como las relacionadas con la agricultura, la producción de alimentos, la educación y la salud en áreas donde el acceso a la electricidad es limitado o inexistente.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. V. Yildiz, J. A. Vrugt, “A toolbox for the optimal design of run-of-river hydropower plants,” Environmental modelling & software, vol. 111, pp. 134-152, 2019, doi: https://doi.org/10.1016/j.envsoft.2018.08.018
  2. S. Norasyiqin, A. Latif, M. S. Chiong, S. Rajoo, A. Takada, Y. Y. Chun, K. Tahara, Y. Ikegami, “The trend and status of energy resources and greenhouse gas emissions in the malaysia power generation mix,” Energies, vol. 14, no. 8, 2021, doi: https://doi.org/10.3390/en14082200
  3. A. K. Karmaker, M. Rahman, A. Hossain, R. Ahmed, “Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh,” Journal of Cleaner Production, p. 244, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118645
  4. K. Saidi, A. Omri, “The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries,” Environmental research, vol. 186, 2020, doi: https://doi.org/10.1016/j.envres.2020.109567
  5. M. Hossain, A. Huda, S. Mekhilef, M. Seyedmahmoudian, B. Horan, A. Stojcevski, M. Ahmed, “A state-of-the-art review of hydropower in Malaysia as renewable energy: Current status and future prospects,” Energy strategy reviews, vol. 22, pp. 426-437, 2018, doi: https://doi.org/10.1016/j.esr.2018.11.001
  6. J. Crnobrnja-Isailović, B. Jovanović, M. Ilić, J. Ćorović, T. Čubrić, D. Stojadinović, N. Ćosić. “Small Hydropower Plants' Proliferation Would Negatively Affect Local Herpetofauna,” Frontiers in Ecology and Evolution, vol. 9, 2021.
  7. F. Henao, I. Dyner, “Renewables in the optimal expansion of colombian power considering the Hidroituango crisis,” Renewable Energy, vol. 158, pp. 612-627, 2020, doi: https://doi.org/10.1016/j.renene.2020.05.055
  8. M. A. Sari, M. Badruzzaman, C. Cherchi, M. Swindle, N. Ajami, J. G. Jacangelo, “Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems,” Journal of environmental management, vol. 228, pp. 416-428, 2018, doi: https://doi.org/10.1016/j.jenvman.2018.08.078
  9. R.C. Adhikari, D.H. Wood, “A new nozzle design methodology for high efficiency crossflow hydro turbines,” Energy for Sustainable Development, vol. 41, pp. 139-148, 2017, doi: https://doi.org/10.1016/j.esd.2017.09.004
  10. C. A. Mockmore, F. Merryfield, “The Banki water-turbine. Engineering Experiment Station Bulletin Series,” Engineering Experiment Station, 1949.
  11. W. W. Durgin, W. K. Fay, “Some fluid flow characteristics of a cross-flow type hydraulic turbine,” Small Hydro Power Fluid Machinery, pp. 77-83, 1984.
  12. V. Sammartano, C. Aricò, A. Carravetta, O. Fecarotta, T. Tucciarelli, “Banki-Michell optimal design by computational fluid dynamics testing and hydrodynamic analysis,” Energies, vol. 6, pp. 2362-2385, 2013, doi: https://doi.org/10.3390/en6052362
  13. S. Khosrowpanah, A. A. Fiuzat, M. L. Albertson “Experimental study of cross-flow turbine,” Journal of Hydraulic Engineering, vol. 114, pp. 299-314, 1988, doi: https://doi.org/10.1061/(ASCE)0733-9429(1988)114:3(299)
  14. A. A. Fiuzat, Bhushan P. Akerkar, “Power outputs of two stages of cross-flow turbine,” Journal of energy engineering, vol. 117, pp. 57-70, 1991, doi: https://doi.org/10.1061/(ASCE)0733-9402(1991)117:2(57)
  15. V. R. Desai, N. M. Aziz, “An experimental investigation of cross-flow turbine efficiency,” Journal of Fluids Engineering, vol. 116, pp. 545-550, 1994, doi: https://doi.org/10.1115/1.2910311
  16. C. B. Joshi, V. Seshadri, S. N. Singh, “Parametric study on performance of cross-flow turbine,” Journal of energy engineering, vol. 121, pp. 28-45, 1995, doi: https://doi.org/10.1061/(ASCE)0733-9402(1995)121:1(28)
  17. H. Olgun, “Investigation of the performance of a cross‐flow turbine,” International journal of energy research, vol. 22, pp. 953-964, 1998, doi: https://doi.org/10.1002/(SICI)1099-114X(199809)22:11<953::AID-ER418>3.0.CO;2-1
  18. N.H. Costa Pereira, J.E. Borges, “Study of the nozzle flow in a cross-flow turbine,” International journal of mechanical sciences, vol. 38, pp. 283-302, 1996, doi: https://doi.org/10.1016/0020-7403(95)00055-0
  19. H. Olgun, “Effect of interior guide tubes in cross‐flow turbine runner on turbine performance,” International journal of energy research, vol. 24, pp. 953-964, 2020, https://doi.org/10.1002/1099-114X(200009)24:11<953::AID-ER634>3.0.CO;2-3
  20. E. Walseth, “Investigation of the Flow through the Runner of a Cross-Flow Turbine,” Institutt for energi og prosessteknikk, 2009.
  21. A. Metin Kaya, İ. Kandemir, M. F. Akşit, K. S. Yiğit “Investigation of optimum working conditions of a micro cross flow turbine,” Environmental Progress & Sustainable Energy, vol. 34, pp. 1506-1511, 2015, doi: https://doi.org/10.1002/ep.12112
  22. N. H. C. Pereira, J. E. Borges, “Prediction of the cross-flow turbine efficiency with experimental verification,” Journal of Hydraulic Engineering, vol. 143, 2017, doi: https://doi.org/10.1061/(ASCE)HY.1943-7900.0001234
  23. V. Sammartano, G. Morreale, M. Sinagra, T. Tucciarelli, “Numerical and experimental investigation of a cross-flow water turbine,” Journal of Hydraulic Research, vol. 54, pp. 321-331, 2016, doi: https://doi.org/10.1080/00221686.2016.1147500
  24. V. Sammartano, M. Sinagra, P. Filianoti, T.Tucciarelli, “A Banki–Michell turbine for in-line water supply systems,” Journal of Hydraulic Research, vol. 55, no. 5, 2017, doi: https://doi.org/10.1080/00221686.2017.1335246
  25. A.H. Elbatran, O. B. Yaakob, Y. M. Ahmed, A. S. Shehata, “Numerical and experimental investigations on efficient design and performance of hydrokinetic Banki cross flow turbine for rural areas,” Ocean Engineering, vol. 159, pp. 437-456, 2018, doi: https://doi.org/10.1016/j.oceaneng.2018.04.042
  26. A. Creus Solé, Instrumentación Industrial, 8th ed. Barcelona: Marcombo., 2011.
  27. C. A. H. Bazo, Manual de diseño, estandarización y fabricación de equipos para pequeñas centrales hidroeléctricas, OLADE, 1985.