Gravitational water vortex hydraulic turbine implementation in Colombia: hydropower potential and prospects
Published 2023-07-06
Keywords
- Colombia,
- electricity consumption,
- energy,
- environmental impact,
- fossil fuel
- Gravitational water vortex hydraulic turbine,
- hydropower generation,
- natural resources,
- renewable energy,
- small hydropower plant ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The availability of the energy has changed the humanity over the last centuries. The first types of energy used by humanity were renewable energies: biomass, wind, and water. But, for the last two centuries, fossil fuels have been the protagonists of world energy consumption. However, recently there has been an awareness of the great energy dependence on a finite resource, geographically concentrated in a few countries, which in addition to degrading the environment, is subject to large fluctuations in price. From renewable energies, hydroelectricity is currently the most important source in the Latin American electricity matrix. Current projections suggest that the installed hydroelectric capacity will continue to grow to meet future electricity demand. New turbine designs, such as gravitational water vortex hydraulic turbines, have drawn the attention of many researchers due to their easy installation and maintenance, and their low environmental impact. This work presents the hydropower potential and prospects for the implementation of this type of turbine in the Colombian context, and as well as a general description of the current panorama of the Colombian energy system.
Downloads
References
- E. F. Moran, People and nature: An introduction to human ecological relations. John Wiley & Sons, 2016.
- T. Van de Graaf, B. K. Sovacool, Global energy politics. John Wiley & Sons, 2020.
- I. Stoddard et al., “Three Decades of Climate Mitigation: Why Haven’t We Bent the Global Emissions Curve,” Annu. Rev. Environ. Resour., vol. 46, no. 1, pp. 653–689, Oct. 2021, doi: https://doi.org/10.1146/annurev-environ-012220-011104
- L. Velásquez, E. Chica, J. Posada-Montoya, “Advances in the Development of Gravitational Water Vortex Hydraulic Turbines,” J. Eng. Sci. Technol. Rev., vol. 14, pp. 1–14, 2021, doi: https://doi.org/10.25103/jestr.143.01
- A. Tesfaye, V. Ancha, G. Tibba, “Numerical analysis of the effect of runner-to-basin diameter ratio on the performance of gravitational water vortex turbine in a scroll basin,” Int. J. Energy Environ. Eng., vol. 13, pp. 1317–1333, 2022, doi: https://doi.org/10.1007/s40095-022-00495-4
- A. B. Timilsina, S. Mulligan, T. R. Bajracharya, “Water vortex hydropower technology: a state-of-the-art review of developmental trends,” Clean Technol. Environ. Policy, vol. 20, pp. 1737–1760, 2018.
- V. J. Alzamora Guzmán, J. A. Glasscock, “Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitational vortex hydropower system,” Water Sci. Eng., vol. 14, no. 1, pp. 72–79, Mar. 2021, doi: https://doi.org/10.1016/j.wse.2021.03.004
- J. A. Aguilera Folgueiras, “Fuentes de energía y Protocolo de Kioto en la evolución del sistema eléctrico español,” Jul. 2012. [Online]. Available: http://hdl.handle.net/10651/13052
- J. A. J. Gowlett, “The discovery of fire by humans: a long and convoluted process,” Philos. Trans. R. Soc. B Biol. Sci., vol. 371, no. 1696, p. 20150164, 2016, doi: https://doi.org/10.1098/rstb.2015.0164
- G. A. Tokaty, A History and Philosophy of Fluid Mechanics. Dover, 1994. [Online]. Available: https://books.google.com.co/books?id=ZmgJDgkDx8UC
- R. L. Hills, Power from Wind: A History of Windmill Technology. Cambridge University Press, 1996. [Online]. Available: https://books.google.com.co/books?id=FoVkfkBV1%5C_8C
- J. LANGDON, “Water-mills and windmills in the west midlands, 1086-1500,” Econ. Hist. Rev., vol. 44, no. 3, pp. 424–444, 1991, doi: https://doi.org/10.1111/j.1468-0289.1991.tb01272.x
- A. Vázquez Pérez, M. Rodriguez Gamez, C. Gustavo, V. Viteri, A. Vélez Quiroz, “Community Power as a Driving Force for Sustainable Local Development,” Int. Res. J. Eng. IT Sci. Res., vol. 3, pp. 7–17, 2017.
- G. Parker, Global Crisis: War, Climate Change, & Catastrophe in the Seventeenth Century. Yale University Press, 2013. [Online]. Available: https://books.google.com.co/books?id=gjdDP15N4FkC
- S. Liu et al., “Coal-fuelled crucible lead-silver smelting in 12th-13th century China: A technological innovation in the age of deforestation,” J. Archaeol. Sci., vol. 104, pp. 75–84, 2019, doi: https://doi.org/10.1016/j.jas.2019.01.004
- J. Dodson et al., “Use of coal in the Bronze Age in China,” The Holocene, vol. 24, pp. 525–530, 2014, doi: https://doi.org/10.1177/0959683614523155
- H. W. Dickinson, A Short History of the Steam Engine. Cambridge University Press, 2011. [Online]. Available: https://books.google.com.co/books?id=8yug4QCWwywC
- J. A. Montagna, “The Industrial Revolution,” Curric. Units, vol. 2, 1981.
- M. Piccolino, “The bicentennial of the Voltaic battery (1800–2000): the artificial electric organ,” Trends Neurosci., vol. 23, no. 4, pp. 147–151, Apr. 2000, doi: https://doi.org/10.1016/S0166-2236(99)01544-1
- E. R. Laithwaite, “The influence of Michael Faraday on power engineering,” Power Eng. J., vol. 5, no. 5, p. 209, 1991, doi: https://doi.org/10.1049/pe:19910043
- G. Adair, Thomas Alva Edison: Inventing the Electric Age. Oxford University Press, USA, 1996. [Online]. Available: https://books.google.com.co/books?id=hEffwEC7hGsC
- J. Lienhard, “A Century of Innovation: Twenty Engineering Achievements that Transformed Our Lives A Century of Innovation: Twenty Engineering Achievements that Transformed Our Lives, George Constable and Bob Somerville Joseph Henry Press, Washington, DC, 2003. $45.00,” Phys. Today, vol. 57, no. 12, pp. 63–63, 2004, doi: https://doi.org/10.1063/1.1878337
- S. Raţiu, “The history of the internal combustion engine,” Ann. Fac. Eng. Hunedoara, vol. 1, pp. 145–148, 2003.
- J. J. Flink, The Automobile Age. MIT Press, 1990. [Online]. Available: https://books.google.com.co/books?id=7WtKH-9ha4MC
- N. Armaroli, V. Balzani, Energy for a Sustainable World. Wiley, 2010. doi: https://doi.org/10.1002/9783527633593
- J. Mohtasham, “Review Article-Renewable Energies,” Energy Procedia, vol. 74, pp. 1289–1297, Aug. 2015, doi: https://doi.org/10.1016/j.egypro.2015.07.774
- M. Taylor, et al, “Energy subsidies: Evolution in the global energy transformation to 2050”.
- T. Ahmad, D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973–1991, 2020, doi: https://doi.org/10.1016/j.egyr.2020.07.020
- British Petroleum, “Bp full report–statistical review of world energy 2021.” 2021. [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf
- S. Arango-Aramburo, J. P. Ríos-Ocampo, E. R. Larsen, “Examining the decreasing share of renewable energy amid growing thermal capacity: The case of South America,” Renew. Sustain. Energy Rev., vol. 119, p. 109648, 2020, doi: https://doi.org/10.1016/j.rser.2019.109648
- S. Carrizo and S. Velut, “Energy transitions and regional integration in South America,” in Territorial planning and La Plata Basin borders, Editora Letra1, 2018, pp. 167–187. doi: https://doi.org/10.21826/9788563800350-06
- S. Zapata, M. Castañeda, A. Aristizábal, I. Dyner, “Renewables for supporting supply adequacy in Colombia,” Energy, vol. 239, p. 122157, 2021, doi: https://doi.org/10.1016/j.energy.2021.122157
- A. Cáceres, P. Jaramillo, H. Matthews, C. Samaras, B. Nijssen, “Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios,” Energy Sustain. Dev., vol. 61, pp. 217–229, 2021, doi: https://doi.org/10.1016/j.esd.2021.02.006
- T. Santos, “Regional energy security goes South: Examining energy integration in South America,” Energy Res. Soc. Sci., vol. 76, p. 102050, 2021, doi: https://doi.org/10.1016/j.erss.2021.102050
- S. N. Abdul Latif et al., “The Trend and Status of Energy Resources and Greenhouse Gas Emissions in the Malaysia Power Generation Mix,” Energies, vol. 14, no. 8, p. 2200, 2021, doi: https://doi.org/10.3390/en14082200
- Hannah Ritchie and Pablo Rosado, “Energy: Key Charts,” 2021. https://ourworldindata.org/energy-key-charts
- O. A. C. Hoes, L. J. J. Meijer, R. J. van der Ent, N. C. van de Giesen, “Systematic high-resolution assessment of global hydropower potential,” PLoS One, vol. 12, no. 2, p. e0171844, 2017, doi: https://doi.org/10.1371/journal.pone.0171844
- V. K. Singh, S. K. Singal, “Operation of hydro power plants-a review,” Renew. Sustain. Energy Rev., vol. 69, pp. 610–619, 2017, doi: https://doi.org/10.1016/j.rser.2016.11.169
- T. S. Kishore, E. R. Patro, V. S. K. V. Harish, A. T. Haghighi, “A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects,” Energies, vol. 14, no. 10, p. 2882, May 2021, doi: https://doi.org/10.3390/en14102882
- J. Górecki, E. Płoszaj, “Cost risk of construction of small hydroelectric power plants,” MATEC Web Conf., vol. 262, p. 07004, 2019, doi: https://doi.org/10.1051/matecconf/201926207004
- H. Jangavar, Y. Noorollahi, A. Emami Meybodi, “Economic and Environmental Analysis of the Small Hydropower Plants Development,” Iran. J. Ecohydrol., vol. 4, no. 4, pp. 1255–1268, 2017, doi: https://doi.org/10.22059/ije.2017.63271
- J. Chen, A. Engeda, “Standard Module Hydraulic Technology: A Novel Geometrical Design Methodology and Analysis for A Low-Head Hydraulic Turbine System, Part I: General design methodology and basic geometry considerations.,” Energy, vol. 196, p. 117151, 2020, doi: https://doi.org/10.1016/j.energy.2020.117151
- S. M. Puentes, A. H. Q. Duque, “Formulación de estrategias para la implementación y fomento de fuentes no convencionales de energías renovables en zonas no interconectadas de Colombia,” 2021.
- S. de S. P. Domiciliarios, “Zonas no interconectadas ZNI, diagnóstico de la prestación del servicio de energía eléctrica 2017,” p. 43, 2017.
- S. de S. P. Domiciliarios, “Zonas no interconectadas– ZNI informe sectorial de la prestación del servicio de energía eléctrica 2021,” p. 41, 2021.
- J. Carlos Rojas, “El mapa de 1.710 poblados que aún se alumbran con velas en Colombia,” El tiempo, 2019. [Online]. Available: https://www.eltiempo.com/colombia/otras-ciudades/los-poblados-que-aun-no-tienen-energia-electrica-en-colombia-324980
- V. Guzmán, J. Glasscock, F. Whitehouse, “Design and construction of an off-grid gravitational vortex hydropower plant: A case study in rural Peru,” Sustain. Energy Technol., vol. 35, pp. 131–138, 2019, doi: https://doi.org/10.1016/j.seta.2019.06.004
- D. S. Edirisinghe, H. S. Yang, S. D. G. S. P. Gunawardane, Y. H. Lee, “Enhancing the performance of gravitational water vortex turbine by flow simulation analysis,” Renew. Energy, vol. 194, pp. 163–180, 2022, doi: https://doi.org/10.1016/j.renene.2022.05.053
- L. Velásquez, A. Posada, E. Chica, “Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology,” Renew. Energy, vol. 187, pp. 508–521, 2022, doi: https://doi.org/10.1016/j.renene.2022.01.113
- Kourispower, “Waterway embodiment of KCT,” 2021. https://www.kourispower.com/technology/
- I. Adejumobi, D. Shobayo, “Optimal Selection of Hydraulic Turbines for Small Hydro Electric Power Generation – A Case Study of Opeki River, South Western Nigeria,” Niger. J. Technol., vol. 34, p. 530, 2015, doi: https://doi.org/10.4314/njt.v34i3.15
- D. Y. Goswami, F. Kreith, Eds., Energy Conversion. CRC Press. 2007, doi: https://doi.org/10.1201/9781420044324
- XM, “Vertimientos.” https://www.xm.com.co/hidrología/vertimientos
- Grupo de Investigación Xué, S. D. I. Barión, “Estado de la cobertura eléctrica y las zonas no interconectadas en la región central,” 2020.
- M. Gamboa, F. F. Serrano, E. G. Gómez, Gustavo, “Mercados de energía en Colombia, una introducción al área.,” Sello Editor. Univ. Pamplona, 2021, [Online]. Available: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2827
- E. L. Gonzales Titi, P. A. Loayza Quiñones, A. M. More Dávila, V. A. R. Simeon Vega, “Propuesta de utilización del gas natural licuefactado en los camiones mineros: evaluación de beneficios,” 2019. [Online]. Available: https://hdl.handle.net/20.500.12640/1737
- H. Duan, Y. Liu, G. Wang, “A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting,” Energy, vol. 251, p. 123968, 2022, doi: https://doi.org/10.1016/j.energy.2022.123968
- Ò. Bosede Comfort, H. Okodua, M. Oladosun, A. Asaleye, “Human capital and poverty reduction in OPEC member-countries,” Heliyon, vol. 5, p. e02279, 2019, doi: https://doi.org/10.1016/j.heliyon.2019.e02279
- Expansion, “Precio del petróleo opep por barril,” 2022. https://datosmacro.expansion.com/materias-primas/opec?anio=2022
- C. Zou et al., “The role of new energy in carbon neutral,” Pet. Explor. Dev., vol. 48, no. 2, pp. 480–491, 2021, doi: https://doi.org/10.1016/S1876-3804(21)60039-3
- H. Nautiyal, V. Goel, “Sustainability assessment of hydropower projects,” J. Clean. Prod., vol. 265, p. 121661, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121661
- UPME, “Plan energético nacional Colombia: ideario energético 2050,” 2015.
- M. Kumar, “Social, Economic, and Environmental Impacts of Renewable Energy Resources,” in Wind Solar Hybrid Renewable Energy System, IntechOpen, 2020. doi: https://doi.org/10.5772/intechopen.89494
- M. Abdel-Basset, A. Gamal, R. K. Chakrabortty, M. J. Ryan, “Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study,” Renew. Energy, vol. 168, pp. 1073–1095, 2021, doi: https://doi.org/10.1016/j.renene.2020.12.124
- C. Li et al., “Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus,” Sci. Rep., vol. 12, no. 1, p. 5170, 2022, doi: https://doi.org/10.1038/s41598-022-08788-8
- J. A. Vélez Henao, et al., “Evaluación de las transferencias del sector eléctrico. El caso de San Carlos y el Oriente Antioqueño,” Rev. Ing. Univ. Medellín, vol. 14, pp. 147–161, 2015.
- Y. Lu, C. Shang, “The environmental impact of the three gorges project and the countermeasures,” Front. Eng. Manag., pp. 120–128, 2014.
- H. Zhenli, B. Wu, Three Gorges Dam: Environmental Monitoring Network and Practice, 2018, pp. 1–14. doi: https://doi.org/10.1007/978-3-662-55302-2_1
- A. Kumar, Z.G. Yu, J. J. Klemeš, A. Bokhari, “A state-of-the-art review of greenhouse gas emissions from Indian hydropower reservoirs,” J. Clean. Prod., vol. 320, p. 128806, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.128806
- M. M. Rahman, J. H. Tan, M. T. Fadzlita, A. R. Wan Khairul Muzammil, “A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources,” IOP Conf. Ser. Mater. Sci. Eng., vol. 217, p. 012007, 2017.
- T. Couto, J. Olden, “Global proliferation of small hydropower plants - science and policy,” Front. Ecol. Environ., vol. 16, 2018, doi: https://doi.org/10.1002/fee.1746
- T. Abbasi, S. A. Abbasi, “Small hydro and the environmental implications of its extensive utilization,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2134–2143, 2011, doi: https://doi.org/10.1016/j.rser.2010.11.050
- E. Renovables and D. Irena, “10 argumentos a favor de las energías renovables,” 2015.
- A. Gómez, C. Arredondo, M. Luna, S. Villegas, J. Hernandez, “Regulating the integration of renewable energy in Colombia: Implications of law 1715 of 2014,” IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, doi: https://doi.org/10.1109/PVSC.2017.8366780
- J. A. Hernandez, C. A. Arredondo, D. J. Rodriguez, “Analysis of the law for the integration of non-conventional renewable energy sources (law 1715 of 2014) and its complementary decrees in Colombia,” in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2019, pp. 1695–1700, doi: https://doi.org/10.1109/PVSC40753.2019.8981233