Vol. 21 Núm. 3 (2022): Revista UIS Ingenierías
Artículos

Una revisión del uso del hidrógeno en motores de encendido por compresión (diésel) y un análisis de su posible uso en motores duales en Colombia

Rafael Menaca
Universidad de Antioquia
Iván Darío Bedoya-Caro
Universidad de Antioquia

Publicado 2022-07-21

Palabras clave

  • desempeño,
  • combustión y emisiones,
  • límites de knock,
  • motores duales diésel-hidrógeno,
  • transición energética,
  • motores de combustión interna,
  • matriz energética colombiana
  • ...Más
    Menos

Cómo citar

Menaca, R. ., & Bedoya-Caro, I. D. (2022). Una revisión del uso del hidrógeno en motores de encendido por compresión (diésel) y un análisis de su posible uso en motores duales en Colombia. Revista UIS Ingenierías, 21(3), 33–54. https://doi.org/10.18273/revuin.v21n3-2022004

Resumen

Las emisiones de los motores de encendido por compresión (MEC) están siendo fuertemente reguladas. Abandonar los motores diésel no es una solución a las regulaciones establecidas, debido a su alto desempeño respecto a similares tecnologías. El uso de combustibles más limpios y alternativos en motores diésel actuales es una propuesta bastante atractiva, puesto que aprovecharía su alta eficiencia y las características verdes de los combustibles no convencionales. El hidrógeno es el combustible más prometedor debido a que es limpio y puede ser producido a partir de energías alternativas como la solar o la eólica. El uso de motores duales diésel-hidrógeno promueve la reducción de agentes contaminantes atmosféricos (COx y hollín) y puede aumentar la eficiencia térmica del motor. En este trabajo se analizan los MEC en modo dual diésel-hidrógeno en una amplia gama de aspectos. Se revisa el efecto de la adición de hidrógeno a los MEC sobre el rendimiento del motor y las emisiones contaminantes. Se describe la legislación de Colombia y su matriz energética, y se analizan los compromisos que se tienen en los procesos energéticos. Se analizan los estudios en Colombia de los motores utilizando hidrógeno, y se establecen los límites de enriquecimiento recomendados expuestos en la literatura.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. A. Boretti, “The future of the internal combustion engine after diesel-gate,” SAE Technical Paper, Tech. Rep., 2017.
  2. S. O. Akansu, Z. Dulger, N. Kahraman, T. N. Veziroglu, “Internal combustion engines fueled by natural gas—hydrogen mixtures,” International journal of hydrogen energy, vol. 29, no. 14, pp. 1527-1539, 2004, doi: https://doi.org/10.1016/j.ijhydene.2004.01.018
  3. S. Verhelst, T. Wallner, “Hydrogenfueled internal combustion engines,” Progress in Energy and Combustion Science, vol. 35, no. 6, pp. 490-527, 2009, doi: https://doi.org/10.1016/j.pecs.2009.08.001
  4. IRENA, “Hydrogen: A renewable energy perspective–report prepared for the 2nd hydrogen energy ministerial meeting in tokyo,” 2019, [Online]. Available: https://www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective
  5. V. Smil, “The two prime movers of globalization: history and impact of diesel engines and gas turbines,” Journal of Global History, vol. 2, no. 3, p. 373, 2007.
  6. A. C. Lloyd, T. A. Cackette, “Diesel engines: environmental impact and control,” Journal of the Air & Waste Management Association, vol. 51, no. 6, pp. 809-847, 2001, doi: https://doi.org/10.1080/10473289.2001.10464315
  7. T. V. Johnson, “Review of diesel emissions and control,” International Journal of Engine Research, vol. 10, no. 5, pp. 275-285, 2009, doi: https://doi.org/10.4271/2010-01-0301
  8. T. Johnson, “Diesel emissions in review,” SAE International Journal of Engines, vol. 4, no. 1, pp. 143-157, 2011, doi: https://doi.org/10.4271/2011-01-0304
  9. H. Nazir, N. Muthuswamy, C. Louis, S. Jose, J. Prakash, M. E. Buan, C. Flox, S. Chavan, X. Shi, P. Kauranen et al., “Is the h2 economy realizable in the foreseeable future? part iii: H2 usage technologies, applications, and challenges and opportunities,” International journal of hydrogen energy, 2020, doi: https://doi.org/10.1016/j.ijhydene.2020.07.256
  10. R. Kavtaradze, T. Natriashvili, S. Gladyshev, “Hydrogen-diesel engine: Problems and prospects of improving the working process,” SAE Technical Paper, Tech. Rep., 2019, doi: https://doi.org/10.4271/2019-01-0541
  11. Y. Karagöz, T. Sandalcı, L. Yüksek, A. S. Dalkılıç, S. Wongwises, “Effect of hydrogen– diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines,” Advances in Mechanical Engineering, vol. 8, no. 8, 2016, doi: https://doi.org/10.1177/1687814016664458
  12. Minciencias, “Plan energético nacional 2020-2050: la transformación energética que habilita el desarrollo sostenible,” Bogotá D. C., 2021.
  13. M. Ball, M. Wietschel, “The future of hydrogen–opportunities and challenges,” International journal of hydrogen energy, vol. 34, no. 2, pp. 615-627, 2009, doi: https://doi.org/10.1016/j.ijhydene.2008.11.014
  14. G. Arce, “Plan de acción indicativo de eficiencia energética 2017-2022,” Una Realidad y Oportunidad para Colombia. Ministerio de Minas y Energía. Unidad de Planeación Minero Energética UPME, 2017.
  15. J. E. A. Gómez, F. E. S. Vargas, V. S. Leal, “Análisis exploratorio de investigaciones sobre los motores de combustión interna que trabajan con biogás,” Tecnura, vol. 18, no. 39, pp. 152-164, 2014, doi: https://doi.org/10.14483/udistrital.jour.tecnura.2014.1.a11
  16. S. Verhelst, J. Demuynck, R. Sierens, R. Scarcelli, N. S. Matthias, T. Wallner, “Update on the progress of hydrogen-fueled internal combustion engines,” Renewable hydrogen technologies, pp. 381-400, 2013, doi: https://doi.org/10.1016/B978-0-444-56352-1.00016-7
  17. B. Sahoo, N. Sahoo, U. Saha, “Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—a critical review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6-7, pp. 1151-1184, 2009, doi: https://doi.org/10.1016/j.rser.2008.08.003
  18. C. Strambo, A. C. González Espinosa, “Extraction and development: fossil fuel production narratives and counternarratives in Colombia,” Climate Policy, vol. 20, no. 8, pp. 931-948, 2020, doi: https://doi.org/10.1080/14693062.2020.1719810
  19. A. R. Montenegro, M. Sanjuan, M. Carmona, “Energy Storage Development using Hydrogen and its Potential Application in Colombia”, IJEEP, vol. 9, no. 6, pp. 254-268, 2019, doi: https://doi.org/10.32479/ijeep.8294
  20. E. de Jesús Henao, C. R. Piedrahita, J. A. Gómez, “Revisión de la investigación en motores de combustión interna en Colombia,” Ingenio Magno, vol. 9, no. 2, pp. 74-93, 2019.
  21. G. F. G. Sánchez, J. L. C. Velasco, A. C. Guerrero, “Modelado de la combustión en motores diésel: revisión del estado del arte,” Revista ION, vol. 26, no. 1, pp. 41-54, 2013.
  22. S. Karthic, P. Pradeep, S. V. Kumar et al., “Assessment of hydrogen-based dual fuel engine on extending knock limiting combustion,” Fuel, vol. 260, p. 116342, 2020, doi: https://doi.org/10.1016/j.fuel.2019.116342
  23. P. Dimitriou, T. Tsujimura, “A review of hydrogen as a compression ignition engine fuel,” International Journal of Hydrogen Energy, vol. 42, no. 38, pp. 24 470-24 486, 2017, doi: https://doi.org/10.1016/j.ijhydene.2017.07.232
  24. D. Duque, O. Medina, M. Saade Hazin, “Infraestructura logística para una mejor gobernanza de la cadena del carbón en Colombia,” Naciones Unidas, 2017.
  25. C. A. Mesa Salamanca, A. Cancino Cadena, J. A. Páez Méndez, G. Meneses Montes, J. Cuéllar Escobar, F. Vásquez Ochoa, “Desarrollo sostenible de la minería de socavón del carbón en Colombia,” Documentos de Investigación, vol. 20, 2017.
  26. Z.-y. Sun, F.-S. Liu, X.-h. Liu, B.-g. Sun, D.-W. Sun, “Research and development of hydrogen fuelled engines in china,” International Journal of Hydrogen Energy, vol. 37, no. 1, pp. 664-681, 2012.
  27. C. White, R. Steeper, A. Lutz, “The hydrogen-fueled internal combustion engine: a technical review,” International journal of hydrogen energy, vol. 31, no. 10, pp. 1292-1305, 2006, doi: https://doi.org/10.1016/j.ijhydene.2005.12.001
  28. W. Lubitz, W. Tumas, “Hydrogen: an overview,” Chemical reviews, vol. 107, no. 10, pp. 3900-3903, 2007, doi: https://doi.org/10.1021/cr050200z
  29. A. G. Young, A. W. Costall, D. Coren, J. W. Turner, “The effect of crankshaft phasing and port timing asymmetry on opposed-piston engine thermal efficiency,” Energies, vol. 14, no. 20, p. 6696, 2021.
  30. M. M. Roy, E. Tomita, N. Kawahara, Y. Harada, A. Sakane, “An experimental investigation on engine performance and emissions of a supercharged h2-diesel dual-fuel engine,” International Journal of Hydrogen Energy, vol. 35, no. 2, pp. 844-853, 2010, doi: https://doi.org/10.1016/j.ijhydene.2009.11.009
  31. P. Stålhammar, Demonstration och utvärdering av dual-fuel-tekniken. Svenskt gastekniskt center, 2011.
  32. C. Bauer and T. Forest, “Effect of hydrogen addition
  33. on the performance of methane-fueled vehicles. part i: effect on si engine performance,” International Journal of Hydrogen Energy, vol. 26, no. 1, pp. 55-70, 2001, doi: https://doi.org/10.1016/S0360-3199(00)00067-7
  34. A. I. Jabbr, W. S. Vaz, H. A. Khairallah, U. O. Koylu, “Multi-objective optimization of operating parameters for hydrogen-fueled sparkignition engines,” International Journal of Hydrogen Energy, vol. 41, no. 40, pp. 18 291-18 299, 2016, doi: https://doi.org/10.1016/j.ijhydene.2016.08.016
  35. S. Premkartikkumar, “Enhancing diesel engine combustion using hydrogen enriched fuels– a review,” International Journal of ChemTech Research, vol. 9, no. 1, pp. 1-6, 2016.
  36. G. Decan, B. De Buyzerie, T. Lucchini, G. D’Errico, S. Verhelst, “Cold flow simulation of a dual-fuel engine for diesel natural gas and diesel-methanol fueling conditions,” SAE Technical Paper, Tech. Rep., 2021, doi: https://doi.org/10.4271/2021-01-0411
  37. J. E. Dec, “A conceptual model of dl diesel combustion based on laser-sheet imaging,” SAE transactions, pp. 1319-1348, 1997.
  38. E. Monemian, A. Cairns, “Hydrogen fumigation on hd diesel engine: An experimental and numerical study,” Diesel and Gasoline Engines, p. 65, 2020, doi: https://doi.org/10.5772/intechopen.89425
  39. H. Köse, M. Ciniviz, “An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen,” Fuel processing technology, vol. 114, pp. 26-34, 2013, doi: https://doi.org/10.1016/j.fuproc.2013.03.023
  40. V. Chintala, K. Subramanian, “A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode,” Renewable and Sustainable Energy Reviews, vol. 70, pp. 472-491, 2017, doi: https://doi.org/10.1016/j.rser.2016.11.247
  41. H. A. Alrazen, A. A. Talib, R. Adnan, K. Ahmad, “A review of the effect of hydrogen addition on the performance and emissions of the compression–ignition engine,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 785-796, 2016, doi: https://doi.org/10.1016/j.rser.2015.10.088
  42. M. Deb, G. Sastry, P. Bose, R. Banerjee, “An experimental study on combustion, performance and emission analysis of a single cylinder, 4stroke di-diesel engine using hydrogen in dual fuel mode of operation,” International Journal of Hydrogen Energy, vol. 40, no. 27, pp. 8586-8598, 2015, doi: https://doi.org/10.1016/j.ijhydene.2015.04.125
  43. T. Tsujimura, Y. Suzuki, “The utilization of hydrogen in hydrogen/diesel dual fuel engine,” International Journal of Hydrogen Energy, vol. 42, no. 19, pp. 14 019-14 029, 2017, doi: https://doi.org/10.1016/j.ijhydene.2017.01.152
  44. B. H. Rao, K. Shrivastava, H. Bhakta, “Hydrogen for dual fuel engine operation,” International Journal of Hydrogen Energy, vol. 8, no. 5, pp. 381-384, 1983.
  45. D. Akal, S. Öztuna, M. K. Büyükakın, “A review of hydrogen usage in internal combustion engines (gasoline-lpg-diesel) from combustion performance aspect,” International Journal of Hydrogen Energy, vol. 45, no. 60, pp. 35 257-35 268, 2020, doi: https://doi.org/10.1016/j.ijhydene.2020.02.001
  46. J. B. Heywood, Internal combustion engine fundamentals. McGraw-Hill Education, 2018.
  47. H. Park, J. Kim, C. Bae, “Effects of hydrogen ratio and EGR on combustion and emissions in a hydrogen/diesel dual-fuel PCCI engine,” SAE Technical Paper, Tech. Rep., 2015, doi: https://doi.org/10.4271/2015-01-1815
  48. X. Shan, Y. Qian, L. Zhu, X. Lu, “Effects of egr rate and hydrogen/carbon monoxide ratio on combustion and emission characteristics of biogas/diesel dual fuel combustion engine,” Fuel, vol. 181, pp. 1050-1057, 2016, doi: https://doi.org/10.1016/j.fuel.2016.04.132
  49. G. Tripathi, P. Sharma, A. Dhar, A. Sadiki, “Computational investigation of diesel injection strategies in hydrogen-diesel dual fuel engine,” Sustainable Energy Technologies and Assessments, vol. 36, p. 100543, 2019, doi: https://doi.org/10.1016/j.seta.2019.100543
  50. V. Chintala, K. Subramanian, “Hydrogen energy share improvement along with nox (oxides of nitrogen) emission reduction in a hydrogen dual-fuel compression ignition engine using water injection,” Energy conversion and management, vol. 83, pp. 249-259, 2014, doi: https://doi.org/10.1016/j.enconman.2014.03.075
  51. M. S. Kumar, S. Karthic, P. Pradeep, “Investigations
  52. on the influence of ethanol and water injection techniques on engine’s behavior of a hydrogen-biofuel based dual fuel engine,” International Journal of Hydrogen Energy, vol. 43, no. 45, pp. 21 090-21 101, 2018, doi: https://doi.org/10.1016/j.ijhydene.2018.09.145
  53. M. Deb, R. Banerjee, A. Majumder, G. Sastry, “Multi objective optimization of performance parameters of a single cylinder diesel engine with hydrogen as a dual fuel using pareto-based genetic algorithm,” International
  54. Journal of Hydrogen Energy, vol. 39, no. 15, pp. 8063-8077, 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.03.045
  55. A. I. Jabbr, H. Gaja, U. O. Koylu, “Multiobjective optimization of operating parameters for a h2/diesel dual-fuel compressionignition engine,” International Journal of Hydrogen Energy, vol. 45, no. 38, pp. 19 965-19 975, 2020.
  56. Keyou, 2021. [Online]. Available: https://www.keyou.de/
  57. V. M. Medisetty, R. Kumar, M. H. Ahmadi, D.V. N. Vo, A. Ochoa, R. Solanki, “Overview on the current status of hydrogen energy research and development in India,” Chemical Engineering & Technology, vol. 43, no. 4, pp. 613-624, 2020, doi: https://doi.org/10.1016/j.ijhydene.2020.05.071
  58. C. García Arbeláez, X. Barrera, R. Gómez, R. Suárez Castaño, “El abc de los compromisos de Colombia para la COP 21,” 2015. [Online]. Available: https://www.wwf.org.co/?248415/El-ABC-de-los-compromisos-de-Colombia-para-la-COP-21
  59. Hydrogen Vehicles and Refueling Infrastructure in India, Hydrogen and Fuel Cell Technologies Office, 2009. [Online]. Available: https://www.energy.gov/sites/prod/files/2014/03/f10/cng_h2_workshop_11_das.pdf
  60. M. Antonio, C. Camargo, “Plan Energético Nacional Colombia: ideario energético 2050,” Bogotá, 2015.
  61. Minenergía, “Hoja de ruta del hidrógeno en Colombia,” 2021.
  62. J. P. Gómez-Montoya, K. P. Cacua-Madero, L. Iral-Galeano, A. A. Amell-Arrieta, “Effect of biogas enriched with hydrogen on the operation and performance ofadiesel-biogas dualengine,” CT&F-Ciencia, Tecnología y Futuro, vol. 5, no. 2, pp. 61-71, 2013.
  63. J. P. Gómez Montoya, A. Amella, D. B. Olsen, G. Amador Díaz, “Strategies to improve the performance of a spark ignition engine using fuel blends of biogas with natural gas, propane and hydrogen,” International Journal of Hydrogen Energy, vol. 43, no. 46, pp. 21 592-21 602, 2018, doi: https://doi.org/10.1016/j.ijhydene.2018.10.009
  64. J. P. Gómez Montoya, G. J. Amador Díaz, A. A. Amell Arrieta, “Effect of equivalence ratio on knocking tendency in spark ignition engines fueled with fuel blends of biogas, natural gas, propane and hydrogen,” International journal of hydrogen energy, vol. 43, no. 51, pp. 23 041-23 049, 2018, doi: https://doi.org/10.1016/j.ijhydene.2018.10.117
  65. A. D. Morales Rojas, “Estudio numérico y experimental de la combustión hcci del hidrógeno y el gas de síntesis en un motor estacionario para la generación de energía eléctrica a condiciones de Medellín,” 2020.
  66. J. C. Prince, M. Díaz, G. Ovando, A. Rodríguez, “Análisis de motores tipo HCCI y su modelado con biocombustibles,” Memorias del XXIV Congreso Internacional Anual de la SOMIM, 2018.
  67. N. D. Forero, D. A. Barrios, J. D. Forero et al., “Overview of potential use of hydroxyl and hydrogen as an alternative fuel in Colombia,” International Journal of Energy Economics and Policy, vol. 9, no. 6, pp. 525-534, 2019, doi: https://doi.org/10.32479/ijeep.8395
  68. Z. Liu, G. Karim, “Knock characteristics of dual-fuel engines fuelled with hydrogen fuel,” International Journal of Hydrogen Energy, vol. 20, no. 11, pp. 919-924, 1995.
  69. D. Lata, A. Misra, S. Medhekar, “Effect of hydrogen and lpg addition on the efficiency and emissions of a dual fuel diesel engine,” International Journal of Hydrogen Energy, vol. 37, no. 7, pp. 6084–6096, 2012.
  70. N. Saravanan, G. Nagarajan, “An experimental investigation of hydrogen-enriched air induction in a diesel engine system,” International journal of hydrogen energy, vol. 33, no. 6, pp. 1769–1775, 2008.
  71. W. Tutak, A. Jamrozik, K. Grab-Rogaliński, “Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine,” International Journal of Hydrogen Energy, vol. 45, no. 15, pp. 9088–9097, 2020.
  72. O. H. Ghazal, “Performance and combustion characteristic of ci engine fueled with hydrogen enriched diesel,” International Journal of Hydrogen Energy, vol. 38, no. 35, pp. 15 469–15 476, 2013.