Vol. 21 Núm. 3 (2022): Revista UIS Ingenierías
Artículos

Comparación del desempeño de indicadores eléctricos para la detección de PID en paneles fotovoltaicos

Jhoan Sebastian Parra-Quiroga
Universidad del Valle
Édinson Franco-Mejía
Universidad del Valle
Martha Lucía Orozco-Gutiérrez
Universidad del Valle
Juan David Bastidas-Rodriguez
Universidad Nacional de Colombia

Publicado 2022-06-15

Palabras clave

  • degradación inducida por potencial,
  • detección de degradación,
  • indicadores eléctricos,
  • modelo de un solo diodo,
  • curva I-V,
  • panel FV,
  • temperatura,
  • irradiancia,
  • factor de llenado,
  • resistencia paralela,
  • razón de cambio de corriente,
  • tensión de circuito abierto
  • ...Más
    Menos

Cómo citar

Parra-Quiroga, J. S., Franco-Mejía , Édinson, Orozco-Gutiérrez , M. L. ., & Bastidas-Rodriguez, J. D. . (2022). Comparación del desempeño de indicadores eléctricos para la detección de PID en paneles fotovoltaicos. Revista UIS Ingenierías, 21(3), 21–32. https://doi.org/10.18273/revuin.v21n3-2022003

Resumen

La degradación inducida por potencial (PID) en paneles solares fotovoltaicos (FV) se produce debido a su operación en cadenas que hacen parte de grandes instalaciones, y bajo ciertas condiciones operativas de voltaje y ambientales, especialmente humedad y temperatura. El PID puede ocasionar hasta un 40 % de disminución en la capacidad de potencia generada del panel FV, y en los casos más severos la terminación de su vida útil. Cuando este fenómeno se detecta a tiempo, las causas se pueden corregir y el efecto en los paneles FV podría ser susceptible a un proceso de reversibilidad. Este artículo presenta un análisis comparativo del desempeño de cuatro indicadores eléctricos para detectar el PID reportados en la literatura reciente. Este estudio se realiza mediante simulación, utilizando el modelo de un solo diodo para representar el comportamiento del panel FV, y bajo diferentes condiciones de irradiancia y temperatura. Los resultados encontrados demuestran ventajas de un indicador basado en la resistencia paralelo normalizada, en cuanto a su practicidad y baja sensibilidad ante cambios en las condiciones de irradiancia y temperatura.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. IEA, “Solar Energy: Maping the road ahead,” vol. 20, no. October, pp. 1–82, 2019. [Online]. Available: https://webstore.iea.org/solar-energy-mapping-the-road-ahead
  2. M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. Berger, K. Kato, T. Friesen, H. Liu, M. Van Iseghem, “Review of Failures of Photovoltaic Modules,” International Energy Agency, Tech. Rep., 2014.
  3. S. Pingel, O. Frank, M. Winkler, S. Oaryan, T. Geipel, H. Hoehne, J. Berghold, “Potential induced degradation of solar cells and panels,” in Conference Record of the IEEE Photovoltaic Specialists Conference, 2010, pp. 2817– 2822.
  4. H. Yang, H. Wang, X. Jiang, C. Chen, J. Chang, J. Zhang, J. Huang, “Effect of PID on Energy Conversion Efficiency of Crystalline Silicon Photovoltaic Power Plant,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, pp. 1927–1930.
  5. SMA Solar Technology AG, “Potential Induced Degradation (PID),” pp. 1–4, 2011.
  6. R. Swanson, M. Cudzinovic, D. Deceuster, V. Desai, J. Jürgens, N. Kaminar, W. Mulligan, D. Rose, D. Smith, a. Terao, K. Wilson, S. Corporation, I. Way, “The Surface Polarization Effect In High- Efficiency Silicon Solar Cells,” IEEE Photovoltaic Specialists Conference, 15th, pp. 1–4, 2005.
  7. K. Brecl, M. Bokalič, M. Topič, “PV Silicon Module Degradation Under High Positive Voltage Bias,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, vol. 2, no. Figure 1, 2017, pp. 1667–1670.
  8. W. Luo, Y. S. Khoo, P. Hacke, V. Naumann, D. Lausch, S. P. Harvey, J. P. Singh, J. Chai, Y. Wang, A. G. Aberle, S. Ramakrishna, “Potential-induced degradation in photovoltaic modules: a critical review,” Energy Environ. Sci., vol. 10, no. 1, pp. 43–68, 2017, doi:
  9. https://doi.org/10.1039/C6EE02271E
  10. J. Lu, Q. Wie, C. Wu, Y. Hu, W. Lian, and Z. Ni, “Investigation on the Anti-PID Method of MCSi Solar Cell for Mass Production,” in 32rd European Photovoltaic Solar Energy Conference and Exhibition, no. 1, 2016, pp. 664–666.
  11. C.-W. Kuo, T.-M. Kuan, L.-G. Wu, C.-C. Huang, H.-Y. Peng, C.-Y. Yu, “Ultrahigh PIDResistance for Mono Silicon PERC Solar Cells by Using Industrial Mass-production Technology,” in 32rd European Photovoltaic Solar Energy Conference and Exhibition, 2016, pp. 966–968.
  12. C. Hinz, S. Koch, T. Weber, J. Berghold, P.-i. B. Ag, D. Berlin, “Regeneration of Potential Induced,” 32nd European Photovoltaic Solar Energy Conference and Exhibition, vol. 49, no. 30, pp. 1–12, 2016.
  13. S. Pingel, S. Janke, O. Frank, “Recovery Methods for Modules Affected by Potential Induced Degradation (PID),” in 27th European Photovoltaic Solar Energy Conference, no. January, 2012, pp. 3379–3383.
  14. Pidbull, “Pidbull - Patented PID Technology to Boost Your PV Output.” [Online]. Available: http://pidbull.com/product/
  15. PIDbox, “PIDbox - Home EN.” [Online]. Available: http://www.pidbox.eu/#thepidbox
  16. ILUMEN, “PIDbox Mini - Ilumen.” [Online]. Available: https://www.ilumen.be/en/all-products/pid-box-mini/
  17. C. Bedin, A. K. Vidal De Oliveira, L. Rafael Do Nascimento, G. Xavier De Andrade Pinto, L. Augusto, Z. Sergio, R. Rüther, “PID Detection in Crystalline Silicon Modules Using Low-Cost Electroluminescence Images in the Field,” Asia Pacific Solar Research Conference. [Online]. Available: www.fotovoltaica.ufsc.br
  18. F. Martínez-Moreno, E. Lorenzo, J. Muñoz, R. Parra, T. Espino, “On-site test for the detection of potential induced degradation in modules,” in 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp. 3313–3317. [Online]. Available: https://oa.upm.es/30003/
  19. J. Hauch, T. Pickel, C. J. Brabec, C. Camus, S. Wrana, M. Dalsass, C. Zetzmann, T. Blumberg, C. Buerhop, J. Adams, “IR-images of PV-modules with potential induced degradation (PID) correlated to monitored string power output,” Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, vol. 9938, p. 99380J, 2016.
  20. C. Buerhop, T. Pickel, F. W. Fecher, C. Zetzmann, J. Hauch, C. Camus, C. J. Brabec, “Quantitative Study of Potential Induced Degradation of a Roof-Top PV-Installation With IR-Imaging,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, pp. 1931–1936.
  21. S. Spataru, D. Sera, T. Kerekes, R. Teodorescu, “Diagnostic method for photovoltaic systems based on light I-V measurements,” Solar Energy, vol. 119, pp. 29–44, 2015, [Online]. Available: https://dx.doi.org/10.1016/j.solener.2015.06.020
  22. M. Florides, G. Makrides, G. E. Georghiou, “Early Potential Induced Degradation (PID) Detection in the Field: Voltage Measurement Methods,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, vol. 39, 2017, pp. 1677–1681.
  23. P. Hernday, “Solar I-V Curves Interpreting Trace Deviations,” Solar Pro, no. September, 2014.
  24. SolarPower Europe, “Operation Maintenance Best Practices Guidelines / Version 3.0,” Tech. Rep., 2018.
  25. T. Kropp, M. Schubert, J. H. Werner, “Quantitative prediction of power loss for damaged photovoltaic modules using electroluminescence,” Energies, vol. 11, no. 5, 2018.
  26. U. Jahn, M. Herz, M. Köntges, D. Parlevliet, M. Paggi, I. Tsanakas, J. S. Stein, K. A. Berger, S. Ranta, R. H. French, M. Richter, T. Tanahashi, Review on Infrared and Electroluminescence Imaging for PV Field Applications, 2017.
  27. J. Berghold, P. Grunow, P. Hacke, W. Hermann,
  28. S. Hoffmann, S. Janke, B. Jaecke, S. Koch, M. Koehl, G. Mathiak, S. Pingel, L. Poehlman, P. Reinig, A. Ukar, “PID Test Round Robins and Outdoor Correlation,” 28th European Photovoltaic Solar Energy Conference and Exhibition, no. September, pp. 3003–3011, 2013.
  29. J. Coello, P. Gutierrez, A. Velasco, A. Cristobal, V. Parra, M. Rosa, “Implementation of Aerial Thermography Inspection of PV Modules in the OM Activities in Large Pv Plants,” in 32nd European Photovoltaic Solar Energy Conference and Exhibition, 2016, pp. 1730–1735.
  30. T. Kaden, K. Lammers, S. Hoffmann, M. Köhl,
  31. P. Bentz, H. J. Möller, “Fast Detection of PID Affected Solar Modules Using Flight Thermography,” in 29th European Photovoltaic Solar Energy Conference and Exhibition, 2014, pp. 2994–2996.
  32. G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, Photovoltaic Sources Modeling, 2017.
  33. M. Florides, G. Makrides, G. E. Georghiou,“Characterisation of the Shunt Resistance due
  34. to Potential Induced Degradation (PID) in Crystalline Solar Cells,” 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, pp. 695–699, 2018.
  35. C. S. Ruschel, F. P. Gasparin, E. R. Costa, and A. Krenzinger, “Assessment of PV modules shunt resistance dependence on solar irradiance,” Solar Energy, vol. 133, pp. 35–43, 2016, doi: https://dx.doi.org/10.1016/j.solener.2016.03.047
  36. J. Bastidas-Rodríguez, E. Franco, G. Petrone, C. Ramos-Paja, G. Spagnuolo, “Quantification of photovoltaic module degradation using model based indicators,” Mathematics and Computers in Simulation, vol. 131, pp. 101–113, 2017, doi: https://doi.org/10.1016/j.matcom.2015.04.003
  37. J. Accarino, G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, “Symbolic algebra for the calculation of the series and parallel resistances in PV module model,” 4th International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2013, pp. 62–66, 2013.
  38. M. G. Villalva, J. R. Gazoli, E. R. Filho, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198–1208, 2009, doi: https://doi.org/10.1109/TPEL.2009.2013862
  39. INTI, “IPS- 100 pv panel datasheet.” [Online].
  40. Available: https://www.energiaymovilidad.com/blog/wp-content/uploads/2018/05/IPS-100esp.pdf
  41. A. D. Dhass, P. Lakshmi, E. Natarajan, “Investigation of Performance Parameters of Different Photovoltaic Cell Materials using the Lambert-W Function,” Energy Procedia, vol. 90, no. December 2015, pp. 566–573, 2016, doi: http://dx.doi.org/10.1016/j.egypro.2016.11.225