Vol. 21 Núm. 4 (2022): Revista UIS Ingenierías
Artículos

Estimación de la producción de lodos en plantas convencionales de tratamiento de agua potable mediante modelos de predicción

Patricia Torres-Lozada
Universidad del Valle
Luis Ancizar Arango-Vallejo
Universidad del Valle
Wilmar Alexander Torres-López
Universidad del Valle
3D

Publicado 2022-12-09

Palabras clave

  • lodos de agua potable,
  • modelos empíricos,
  • modelos estocásticos,
  • predicción de producción de lodos,
  • tratamiento de agua potable

Cómo citar

Torres-Lozada , P., Arango-Vallejo , L. A. ., & Torres-López, W. A. . (2022). Estimación de la producción de lodos en plantas convencionales de tratamiento de agua potable mediante modelos de predicción . Revista UIS Ingenierías, 21(4), 87–96. https://doi.org/10.18273/revuin.v21n4-2022008

Resumen

El tratamiento de agua para consumo humano en plantas de tratamiento de agua potable (PTAP) convencionales, genera lodos que se retienen principalmente en la etapa de sedimentación y para hacer un manejo adecuado es importante conocer las cantidades producidas. Para aportar a este fin, en este estudio se evaluaron diferentes modelos empíricos (AFEE, Cornwell & Koppers, Coşkun, CETESB, AWWA y Kawamura) y estocásticos (ARIMA) para la predicción de la producción de lodos de una PTAP convencional que utiliza sulfato de aluminio como coagulante. Entre los modelos empíricos, los tres primeros presentaron un mejor ajuste frente a los datos observados; sin embargo, el estocástico ARIMA (0,1,2) fue el de mejor predicción con una diferencia de 1.51% entre el valor pronosticado y el observado (2173,65 ± 549 vs 2207 Kg / día de lodos en base seca), lo que demuestra su aplicabilidad para estimar la producción de lodos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. World Health Organization, Guidelines for Drinking-water Quality, 3rd ed. Geneva: World Healt Organization, 2011.
  2. A. Pérez-Vidal, P. Torres-Lozada, J. Escobar-Rivera, “Hazard identification in watersheds based on water safety plan approach: case study of Cali-Colombia,” Environ. Eng. Manag. J., vol. 15, no. 4, pp. 861–872, 2016, doi: http://10.30638/eemj.2016.093
  3. W. Q. Betancourt, J. B. Rose, “Drinking water treatment processes for removal of Cryptosporidium and Giardia,” Vet. Parasitol., vol. 126, no. 1–2, pp. 219–234, 2004, doi: http://10.1016/j.vetpar.2004.09.002
  4. S. R. Qasim, E. M. Motley, G. Zhu, Water Works Engineering: Planning, Design, and Operation. Prentice Hall PTR, 2000. [Online]. Available: https://books.google.com/books?id=cAlSAAAAMAAJ
  5. R. F. Quirós, “Lodos producidos en el tratamiento del agua potable,” Técnica Ind., vol. 275, p. 47, 2008.
  6. L. Di Bernardo, D. B. Dantas, “Métodos e técnicas de tratamento de água,” Eng. Sanit. e Ambient., vol. 11, no. 2, pp. 107–107, 2006, doi: http://10.1590/S1413-41522006000200001
  7. Y. Q. Zhao, X. H. Zhao, A. O. Babatunde, “Use of dewatered alum sludge as main substrate in treatment reed bed receiving agricultural wastewater: Long-term trial,” Bioresour. Technol., vol. 100, no. 2, pp. 644–648, 2009, doi: http://10.1016/j.biortech.2008.07.040
  8. J. H. Adler, “Fables of the Cuyahoga: Reconstructing a History of Environmental Protection,” SSRN Electron. J., 2002, doi: http://10.2139/ssrn.333140
  9. O. Ceron, S. Millan, F. Espejel, A. Rodríguez, R. M. Ramirez, “Aplicación de lodos de plantas potabilizadoras en materiales cementantes para elaborar productos de la construcción,” trabajo fin de curso, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, UNAM.
  10. P. Torres, D. Hernández, D. Paredes, “Uso productivo de lodos de plantas de tratamiento de agua potable en la fabricación de ladrillos cerámicos,” Rev. Ing. construcción, vol. 27, no. 3, pp. 145–154, 2012, doi: http://10.4067/S0718-50732012000300003
  11. C. Ferone et al., “Sustainable management of water potabilization sludge by means of geopolymers production,” J. Clean. Prod., vol. 229, pp. 1–9, 2019, doi: http://10.1016/j.jclepro.2019.04.299
  12. S. De Carvalho Gomes, J. L. Zhou, W. Li, G. Long, “Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review,” Resour. Conserv. Recycl., vol. 145, pp. 148–159, 2019, doi: http://10.1016/j.resconrec.2019.02.032
  13. V. T. Katayama, C. P. Montes, T. H. Ferraz, D. M. Morita, “Quantificação da produção de lodo de estações de tratamento de água de ciclo completo: uma análise crítica,” Eng. Sanit. e Ambient., vol. 20, no. 4, pp. 559–569, 2015, doi: http://10.1590/S1413-41522015020040105046
  14. “Comisión de regulación de agua potable y saneamiento básico,” 2012. [En línea]. Disponible en: https://www.cra.gov.co/
  15. B. O. Ferreira, M. R. Vianna, “Caracterização qualitativa e quantitativa do lodo originário dos decantadores de uma estação de tratamento de água da região metropolitana de Belo Horizonte tratando água de baixa turbidez,” Construindo, pp. 17–20, 2011.
  16. A. Pérez-Vidal, J. C. Escobar-Rivera, P. Torres-Lozada, “Evaluación del riesgo en procesos de tratamiento de agua para el desarrollo de un Plan de Seguridad del Agua – PSA,” DYNA, vol. 85, no. 206, pp. 304–310, 2018, doi: http://10.15446/dyna.v85n206.65427
  17. American Water Works Association, Water quality and treatment: A Handbook Of Community Water Supplies. New York, 1999.
  18. D. Bartiko, M. De Julio, “Construção e emprego de diagramas de coagulação como ferramenta para o monitoramento contínuo da floculação em águas de abastecimento,” Ambient. e Agua - An Interdiscip. J. Appl. Sci., vol. 10, no. 1, 2015, doi: http://10.4136/ambi-agua.1239
  19. A. Saron, B. M. Barbosa, “Quantificação de lodo em estação de tratamento de água,” trabajo de maestría, Escola Politécnica, Universidade de São Paulo, doi: https://10.11606/D.3.2012.tde-19072013-161144 2001
  20. G. F. Januário, S. S. Ferreira Filho, “Planejamento e aspectos ambientais envolvidos na disposição final de lodos das estações de tratamento de água da Região Metropolitana de São Paulo,” Eng. Sanit. e Ambient., vol. 12, no. 2, pp. 117–126, 2007, doi: http://10.1590/S1413-41522007000200002
  21. American Water Works Association, Alum sludge in the aquatic environment. AWWA Research Foundation and American Water Works Association, 1978.
  22. D. A. Cornwell, H. M. Koopers, Slib, Schlamm, Sludge. AWWARF and KIWA Ltd., 1990.
  23. S. Kawamura, Integrated design of water treatment facilities, 1st ed. New York, 2000.
  24. S. Coşkun, “Evsel atık sulardan partikül kirliliği gideriminde alüm çamurunun koagülant olarak kullanılması,” SDÜ Fen Bilimleri Enstitüsü, 2008.
  25. G. E. P. Box, G. Jenkins, Time series analysis, Forecasting and control. San Francisco, 1976.
  26. G. Boyd, D. Na, Z. Li, S. Snowling, Q. Zhang, P. Zhou, “Influent Forecasting for Wastewater Treatment Plants in North America,” Sustainability, vol. 11, no. 6, p. 1764, 2019, doi: http://10.3390/su11061764
  27. C. Chen, L.-M. Liu, “Joint Estimation of Model Parameters and Outlier Effects in Time Series,” J. Am. Stat. Assoc., vol. 88, no. 421, pp. 284–297, 1993, doi: http://10.1080/01621459.1993.10594321
  28. G. E. P. Box, D. R. Cox, “An Analysis of Transformations,” J. R. Stat. Soc. Ser. B, vol. 26, no. 2, pp. 211–243, 1964, doi: http://10.1111/j.2517-6161.1964.tb00553.x
  29. D. A. Dickey, W. A. Fuller, “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” J. Am. Stat. Assoc., vol. 74, no. 366a, pp. 427–431, 1979, doi: http://10.1080/01621459.1979.10482531
  30. V. Guerrero, Análisis estadístico de series de tiempo económicas, 2nd ed. Thomson, 2003.
  31. G. E. P. Box, G. Jenkins, G. C. Reinsel, G. M. Ljung, Time series analysis: Forecasting and control. New York, 2015.
  32. T. R. D. C. Team, R: A Language and Environment for Statistical Computing. Vienna, 2013.
  33. IDEAM, “Resolución 062 de 2007,” Ministerio de Hacienda y Crédito Público, Ministerio de Vivienda, Ciudad y Territorio, Fonda Nacional de Vivienda – Fonvivienda, pp. 1–55, 2007.
  34. L. A. Arango, “Valorización de lodos aluminosos generados en procesos de potabilización en la fabricación de bloques de adobe,” Universidad del Valle, 2015.
  35. A. Amirtharajah, K. M. Mills, “Rapid-mix design for mechanisms of alum coagulation,” J. Am. Water Works Assoc., vol. 74, no. 4, pp. 210–216, 1982, doi: http://10.1002/j.1551-8833.1982.tb04890.x
  36. C. Montoya, D. Loaiza, P. Torres, C. H. Cruz, J. C. Escobar, “Efecto Del Incremento En La Turbiedad Del Agua Cruda Sobre La Eficiencia De Procesos Convencionales De Potabilización,” Rev. EIA, vol. 8, no. 16, pp. 137–148, 2011.
  37. D. Peña, Análisis de Series Temporales. España: Alianza, 2010.
  38. J. D. Cryer K. S. Chan, Time series analysis with applications in R, 2nd ed. 2008.
  39. M. V Martínez, “Estudio para el tratamiento, manejo y disposición final de lodos generados en plantas de tratamiento de agua potable,” trabajo fin de grado, Escuela Politécnica Nacional, Quito, 2012.