Vol. 22 Núm. 2 (2023): Revista UIS Ingenierías
Artículos

Aplicación del enfoque de desarrollo en cascada en el proyecto geotérmico del Macizo Volcánico del Ruiz

Julián Andrés Ortiz-González
Universidad Autónoma de Manizales

Publicado 2023-06-06

Palabras clave

  • energía geotérmica,
  • proyecto geotérmico del Macizo Volcánico del Ruiz,
  • desarrollo en cascada,
  • generación de electricidadgeneración de electricidad,
  • usos directos del calor

Cómo citar

Ortiz-González, J. A. (2023). Aplicación del enfoque de desarrollo en cascada en el proyecto geotérmico del Macizo Volcánico del Ruiz. Revista UIS Ingenierías, 22(2), 109–128. https://doi.org/10.18273/revuin.v22n2-2023010

Resumen

Desde 1968, en el Macizo Volcánico del Ruiz se han realizado estudios que comprueban el gran potencial que existe en la región, para la generación de electricidad a partir de la energía geotérmica, sin embargo, este desarrollo no se ha materializado hasta la fecha. Por esta razón y con el ánimo de aportar en el desarrollo de la geotermia en Colombia, se analizaron las barreras que han venido surgiendo en la implementación del proyecto y para intentar superar algunas de estas se implementó una metodología de desarrollo en cascada a partir de un solo pozo productor. Los resultados mostraron que, con este nuevo enfoque, el aprovechamiento del campo se podría realizar en un menor tiempo, con una eficiencia energética mayor, adaptándose a las necesidades de las comunidades aledañas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. J. Pous, Energía geotérmica. Barcelona: Ceac, 2004.
  2. N. E. Bassam, P. Maegaard y M. L. Schlichting, Chapter Twelve - Geothermal Energy. Distributed Renewable Energies for Off-Grid Communities. Elsevier, 2013, pp. 185-192, doi: https://doi.org/10.1016/C2011-0-07940-1
  3. IRENA. Statistics: Trends in Renewable Energy. [En línea]. Disponible en: http://www.irena.org/Statistics/View-DatabyTopic/Capacity-and-Generation/ Statistics-Time-Series
  4. ThinkGeoEnergy. Top 10 Geothermal Countries 2021 – installed power generation capacity (MWe). [En línea]. Disponible en: https://www.thinkgeoenergy.com/thinkg eoenergys-top-10-geothermal-countries-2021-installed-power-generation-capacity-mwe/
  5. R. DiPippo, Geothermal Power Generation: Developments and Innovation. EL SEVIER, 2016, doi: https://doi.org/10.1016/C2014-0-03384-9
  6. M. Gehringer, V. Loksha, “Geothermal Handbook: Planning and Financing Power Generation A Pre-launch.” The World Bank Group, Washington, USA, pp. 16–100, 2012.
  7. E. Mejía, L. Rayo, J. Mendez, J. Echeverri, “Geothermal Development in Colombia”, Short Course VI on Utilization of Low- and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization. LaGeo, 2014. [Online]. Available: http://collections.unu.edu/eserv/UNU:5544/ESSC2014.pdf
  8. D. A. M. Rendón, I. J. L. Sánchez, D. Blessent, “Geothermal energy in Colombia as of 2018”, Ing. Univ. vol. 24, no. 1, pp. 2–27, Feb. 2020, doi: https://doi.org/10.11144/Javeriana.iyu24.geic
  9. International Finance Corporation, “Success of Geothermal Wells: A global study.” [En línea]. Disponible en: https://www.ifc.org/wps/wcm/connect/22970ec7-d846-47c3-a9f5-e4a65873bd3b/ifc-drilling-success-report-final.pdf?MOD=AJPERES&CVID=jYlcyTW
  10. “Decreto 1073 de 2015: con el fin de reglamentar los artículos 21 y 21-1 de la Ley 1715 de 2014 en lo relacionado con el desarrollo de actividades orientadas a la generación de energía eléctrica a través de geotermia,” Ministerio de Minas y Energía, 2015.
  11. Ministerio de Minas y Energía, “Resolución 40302 de 2022: Por la cual se establecen los requisitos técnicos que regirán el Registro Geotérmico,” Presidencia de la República de Colombia, 2022.
  12. Acolgen, “Capacidad instalada en Colombia,” 2023. [En línea]. Disponible en: https://acolgen.org.co/
  13. P. Chege, G. Bardarson, A. Richter, “KenGen’s successful implementation of a modular geothermal wellhead strategy,” Trans. - Geotherm. Resour. Counc., vol. 41, pp. 2407–2421, 2017, [Online]. Available: https://publications.mygeoenergynow.org/grc/1033878.pdf
  14. S. Kiptanui, E. Kipyego, “Viability of wellhead power plants in accelerating geothermal development in Kenya: case of Menengai,” Proceedings, 6th African Rift Geothermal Conference, 2016.
  15. G. H. Bert, “Developments in geothermal energy in Mexico-part three: economics of wellhead versus central power plants,” J. Heat Recovery Systems, v. 6, no. 3, pp. 191-200, 1986, doi: https://doi.org/10.1016/0198-7593(86)90002-0
  16. K. Wallace, T. Saleen, W. Harvey, “Field Hopping: Modular Turbine Experience from Central America,” GRC Trans., vol. 41, 2018, [Online]. Available: https://publications.mygeoenergynow.org/grc/1033966.pdf
  17. J. Sutter, E. Kipyego, D. Mutai, “The use of portable geothermal wellhead generators as small power plants to accelerate geothermal development and power generation in Kenya,” Proceedings, Thirty-Seventh Work. Geotherm. Reserv. Eng., pp. 27–33, 2012, [Online]. Available: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2012/Sutter.pdf
  18. J. W. Lund, T. Boyd, “Small geothermal power project examples,” GHC Bulletin, 2019.
  19. M. Long, R. Raman, W. Harvey, “Staged Asset Deployment – Commercial and Technical Advantages of Using a Wellhead Generation Unit,” Proceedings 4th African Rift Geothermal Conference, 2012.
  20. M. A. Dahlan, H. B. Pratama, N. M. Saptadji, “Pre-feasibility Study of Condensing Wellhead Generating Unit Utilization in Partially Vapor Dominated System,” IOP Conf. Ser. Earth Environ. Sci., vol. 417, no. 1, p. 012021, 2020, doi: https://doi.org/10.1088/1755-1315/417/1/012021
  21. Y. Gudmundsson, E. Hallgrimsdottir, “Wellhead power plants,” Proceedings, 6th African Rift Geothermal Conference, 2016. [Online]. Available: https://theargeo.org/fullpapers/WELLHEAD%20POWER%20PLANTS.pdf
  22. L. Elíasson, C. Smith, “When smaller is bettercost/size/risk analysis of geothermal projects,” in Proceedings of Kenya Geothermal Conference, 2011.
  23. A. Córdova Geirdal, M. S. Gudjonsdottir, P. Jensson, “Economic comparison of a well-head geothermal power plant and a traditional one,” Geothermics, vol. 53, pp. 1–13, 2015, doi: https://doi.org/10.1016/j.geothermics.2014.04.003
  24. J. A. Ortiz Gonzalez, J. L. Palacio, “Analysis of Different Electricity Generation Scenarios in the ‘Macizo Volcánico Del Ruiz’ Geothermal Project,” SSRN Electron. J., 2022, doi: https://doi.org/10.2139/ssrn.4191255
  25. C. Rubio-Maya, V. M. Ambríz Díaz, E. Pastor Martínez, J. M. Belman-Flores, “Cascade utilization of low and medium enthalpy geothermal resources − A review,” Renew. Sustain. Energy Rev., vol. 52, pp. 689–716, Dec. 2015, doi: https://doi.org/10.1016/j.rser.2015.07.162
  26. H. Aviña Jiménez, M. Torreblanca, A. Garcia-Gutierrez, “Cascade uses of geothermal energy in Mexico,” GRC Trans., vol. 40, p. 169.172, 2016.
  27. J. W. Lund, A. N. Toth, “Direct Utilization of Geothermal Energy 2020 Worldwide Review,” Proceedings World Geothermal Congress, 2020.
  28. M. Climo, S.D. Milicich, B. White, “A history of geothermal direct use development in the Taupo Volcanic Zone, New Zealand,” Geothermics, vol. 59, pp. 215–224, 2016, doi: https://doi.org/10.1016/j.geothermics.2015.07.004
  29. Burlington Electric Department, Ground-source heat pump systems. [En línea]. Disponible en: https://www.burlingtonelectric.com/gshp/
  30. H. Hreinn, M. Runólfur, J. Sigþór, “Húsavík Energy - Multiple use of geothermal energy Thermie project nr.,” Int. Geotherm. Conf., 2003, [Online]. Available: https://rafhladan.is/bitstream/handle/10802/9409/S11Paper058.pdf?sequence=1
  31. C. Alfaro, “Improvement of Perception of the Geothermal Energy as a Potential Source of Electrical Energy in Colombia, Country Update,” Proceedings, World Geothermal Congress, 2015.
  32. J. A. Hernández, J. F. Cardona, E. J. Vega. “Colombian Geothermal Energy Development: Technical and Economic Factors Favoring Foreign Investment,” GRC Transactions, vol. 40, 2016.
  33. “Notas para la investigación y desarrollo de proyectos geotérmicos en Colombia. Estudios de prefactibilidad para el campo geotérmico del Macizo Volcánico del Ruiz: Programa Estratégico de Investigación y Modelo del Sistema Hidrotermal Magmático”, Convenio ISAGEN - BID/JC, 2012.
  34. N. C. Marzolf, “Emprendimiento de la Energía Geotérmica en Colombia,” ISAGEN y BID, 2014.
  35. “Nevado del Ruiz Geothermal Prospect,” Nereidas Exploration Well N1. Drilling Report, 1997.
  36. “Proyecto Geotérmico Valle de Nereidas, Colombia: Revisión e integración del modelo conceptual para determinar puntos de perforación,” Empresas Públicas de Medellín E.S.P., 2016.
  37. Dewhurst Group, “Appendix 10 Economic Impact Assessment. Geothermal Resource Assessment,” Presentado a Empresas Públicas de Medellín E.S.P. 2016.
  38. J. A. O. González, J. L. Palacio, “Wellhead power plants, an option to enhance the “Macizo Volcánico del Ruiz” Geothermal Project,” Proceedings World Geothermal Congress, 2021.
  39. J. Bonafin, F. Felice, A. Duvia, “Binary power plants for the high enthalpy well-head generation,” Proceedings, 7th African Rift Geothermal Conference, 2018.
  40. G. Cappetti, “Cerro Pabellón geothermal plant: a success story.,” GEOLAC, Santiago de Chile, 2019.
  41. Ingeniería Strycon S.A.S., “Estudio de impacto ambiental: Proyecto Geotérmico Macizo Volcánico del Ruiz – Etapa exploratoria. Caracterización área influencia – medio socioeconómico,” Informe interno para CHEC grupo EPM, 2016.
  42. H. M. A. Jiménez, P. S. Pérez, O. V. Madrazo, E. González, P. A. J. Rivera, “Low-Enthalpy Geothermal Food Dehydrator,” GRC Transactions, v. 40, pp. 163-168, 2016.
  43. “Deshidratador Geotérmico de Alimentos”, Grupo de investigación de Desalación y Energías Alternas IIDEA, del Instituto de Ingeniería de la Universidad Nacional Autónoma de México UNAM, 2021. [En línea]. Disponible en: http://proyectos2.iingen.unam.mx/IIDEA/deshidratador.html
  44. H. A. Jiménez, “Uso integral de la energía geotérmica en México”, Grupo de investigación de Desalación y Energías Alternas IIDEA, del Instituto de Ingeniería de la Universidad Nacional Autónoma de México UNAM, 2020.
  45. L. T. Giraldo, G. H. C. Marín, J. A. O. González, “Estudio de aprovechamiento del calor geotérmico residual para la deshidratación de alimentos dentro del proyecto Macizo Volcánico Nevado del Ruiz” CHEC-grupo EPM, 2022.
  46. “British Columbia Utilities Commission – Indigenous Utilities Regulation Inquiry – Project No. 1598998 Final Report”, British Columbia Utilities Commission, 2020.
  47. W. L. Lund, Milk pasteurization with geothermal energy. GHC bulletin, 1997.
  48. Ultra-High Temperature (UHT) Pasteurisation, “The UHT pasteurisation process,” 2021. [En línea]. Disponible en: https://uht-pasteurisation-foodtech9.weebly.com/uht-pasteurisation-process-q1.html
  49. E. F. M. Ramírez, “Estudio de factibilidad para el aprovechamiento de calor residual en el proyecto planta geotérmica Valle de Nereidas, a construirse en el Macizo Volcánico del Ruiz,” Proyecto fin de master, Universidad Autónoma de Occidente, 2022.
  50. J. S. P. González, “Calefacción para un Eco-Hotel y una vivienda familiar, proyecto geotérmico Macizo Volcánico del Ruíz,” Informe interno CHEC grupo EPM, 2021.
  51. R. J. H. Rolón, “Análisis financiero de sistemas de calefacción geotérmica,” Informe interno CHEC grupo EPM, 2021.
  52. M. Jover, S. Martínez, A. Tomás, L. Pérez, “Propuesta metodológica para el diseño de instalaciones piscícolas,” Grupo de Investigación en Recursos Acuícolas, Departamento de Ciencia Animal, Universidad Politécnica de Valencia, 2003.
  53. J. S. P. González, “Análisis técnico del sistema acuapónico con calefacción geotérmica,” Informe interno CHEC grupo EPM, 2021.
  54. R. J. H. Rolón, “Análisis Financiero del sistema acuapónico con calefacción geotérmica,” Informe interno CHEC grupo EPM, 2021.