Vol. 21 Núm. 4 (2022): Revista UIS Ingenierías
Artículos

Efecto de la sustitución parcial de Cr con Co sobre la capacidad de formación de vidrio, propiedades mecánicas y magnéticas en vidrios metálicos a granel Fe48Mo14Cr15-xCoxB6P8Si7Y2

Cosmin Codrean
Politehnica University Timisoara
Dragoş Buzdugan
Politehnica University Timisoara
Mircea Vodă
Politehnica University Timisoara
Viorel-Aurel Şerban
Politehnica University Timisoara
Alberto Pertuz-Comas
Universidad Industrial de Santander
3D

Publicado 2022-10-21

Palabras clave

  • vidrios metálicos a granel,
  • GFA,
  • DSC,
  • nanoindentación,
  • resistencia a la compresión,
  • propiedades magnéticas blandas
  • ...Más
    Menos

Cómo citar

Codrean , C., Buzdugan, D. . ., Vodă , M., Şerban , V.-A. ., & Pertuz-Comas, A. (2022). Efecto de la sustitución parcial de Cr con Co sobre la capacidad de formación de vidrio, propiedades mecánicas y magnéticas en vidrios metálicos a granel Fe48Mo14Cr15-xCoxB6P8Si7Y2. Revista UIS Ingenierías, 21(4), 29–38. https://doi.org/10.18273/revuin.v21n4-2022003

Resumen

Los BMG a base de Fe son bien conocidos por su atractiva combinación de propiedades estructurales, magnéticas y de corrosión. Estas aleaciones se utilizan ampliamente en la industria debido a su bajo precio y buena capacidad de formación de vidrio (GFA). En este trabajo se estudió el efecto de la sustitución parcial de Cr con Co sobre GFA, propiedades mecánicas y magnéticas de vidrios metálicos a granel Fe48Mo14Cr15-xCoxB6P8Si7Y2. Las muestras fueron preparadas por la técnica de fundición en molde de cobre en forma de varilla. Las aleaciones elaboradas fueron investigadas estructuralmente por difracción de rayos X (XRD) y calorimetría diferencial de barrido (DSC), mientras que las propiedades mecánicas fueron investigadas por pruebas de compresión y nanoindentación. Además, se investigaron las propiedades magnéticas. La GFA se estimó por varios criterios o parámetros (temperatura de transición reducida Trg, ΔTx, parámetros α, β, γ y δ). Se encontró que la adición de Co en lugar de Cr conduce a un ligero aumento de la capacidad de formación de vidrio de la familia Fe-Mo-Cr-B-P-Si-Y. Además, se ha observado un aumento en las propiedades magnéticas, dureza, módulo elástico y resistencia a la compresión.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. M. J. Fowler, R. W. Kimball, D. A. Thomas III, A. J. Goupee, “Design and Testing of Scale Model Wind Turbines for Use in Wind/Wave Basin Model Tests of Floating Offshore Wind Turbines”, ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, 2013, doi: https://doi.org/10.1115/OMAE2013-10122
  2. C. Suryanarayana, A. Inoue, Bulk metallic glasses. CRC Press: Boca Raton, FL, 2011.
  3. M. Stoica, Fe-Based Bulk Metallic Glasses. Wiesbaden: Springer Fachmedien Wiesbaden, 2017.
  4. C. Wang et al., “Effect of P on glass forming ability, magnetic properties and oxidation behavior of FeSiBP amorphous alloys,” Intermetallics, vol. 84, pp. 142–147, 2017, doi: https://doi.org/10.1016/j.intermet.2016.12.024
  5. W. H. Wang, C. Dong, C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. R Reports, vol. 44, no. 2, pp. 45–89, 2004, doi: https://doi.org/10.1016/j.mser.2004.03.001
  6. B. R. Rao, “Bulk Metallic Glasses : Materials of Future,” Science, vol. 212, no. March, pp. 212–218, 2009.
  7. A. Inoue, B. Shen, A. Takeuchi, “Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System,” Mater. Trans., vol. 47, no. 5, pp. 1275–1285, 2006, doi: https://doi.org/10.2320/matertrans.47.1275
  8. H. X. Li, Z. C. Lu, S. L. Wang, Y. Wu, and Z. P. Lu, “Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications,” Prog. Mater. Sci., vol. 103, pp. 235–318, 2019, doi: https://doi.org/10.1016/j.pmatsci.2019.01.003
  9. H. W. Kui, A. L. Greer, D. Turnbull, “Formation of bulk metallic glass by fluxing,” Appl. Phys. Lett., vol. 45, no. 6, pp. 615–616, 1984, doi: https://doi.org/10.1063/1.95330
  10. S. Wang, Y. Li, X. Wang, S. Yamaura, W. Zhang, “Glass-forming ability, thermal properties, and corrosion resistance of Fe-based (Fe, Ni, Mo, Cr)-P-C-B metallic glasses,” J. Non. Cryst. Solids, vol. 476, pp. 75–80, 2017, doi: https://doi.org/10.1016/j.jnoncrysol.2017.09.028
  11. P. H. Tsai, A. C. Xiao, J. B. Li, J. S. C. Jang, J. P. Chu, J. C. Huang, “Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance,” J. Alloys Compd., vol. 586, pp. 94–98, 2014, doi: https://doi.org/10.1016/j.jallcom.2013.09.186
  12. A. Inoue, A. Takeuchi, “Recent Progress in Bulk Glassy Alloys,” Mater. Trans., vol. 43, no. 8, pp. 1892–1906, 2002, doi: https://doi.org/10.2320/matertrans.43.1892
  13. M. Iqbal, J. I. Akhter, H. F. Zhang, and Z. Q. Hu, “Synthesis and characterization of bulk amorphous steels,” J. Non. Cryst. Solids, vol. 354, no. 28, pp. 3284–3290, 2008, doi: https://doi.org/10.1016/j.jnoncrysol.2008.02.009
  14. D. S. Song, J.-H. Kim, E. Fleury, W. T. Kim, and D. H. Kim, “Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Nb–B–Y system,” J. Alloys Compd., vol. 389, no. 1–2, pp. 159–164, 2005, doi: https://doi.org/10.1016/j.jallcom.2004.08.014
  15. D. Turnbull, “Under what conditions can a glass be formed?,” Contemp. Phys., vol. 10, no. 5, pp. 473–488, Sep. 1969, doi: https://doi.org/10.1080/00107516908204405
  16. Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses,” Acta Mater., vol. 50, no. 13, pp. 3501–3512, 2002, doi: https://doi.org/10.1016/S1359-6454(02)00166-0
  17. K. Mondal, B. S. Murty, “On the parameters to assess the glass forming ability of liquids,” J. Non. Cryst. Solids, vol. 351, no. 16–17, pp. 1366–1371, 2005, doi: https://doi.org/10.1016/j.jnoncrysol.2005.03.006
  18. C. Qing-Jun, S. Jun, F. Hong-Bo, S. Jian-Fei, H. Yong-Jiang, M.D. G., “Glass-Forming Ability of an Iron-Based Alloy Enhanced by Co Addition and Evaluated by a New Criterion,” Chinese Physics Letters, vol. 22, pp. 1736–1738, 2005, doi: https://doi.org/10.1088/0256-307X/22/7/048
  19. J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang, “Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy,” Applied Physics Letters, vol. 86, 2005, doi: https://doi.org/10.1063/1.1897426
  20. S. Wang, W. Jiang, H. Hu, P. Liu, J. Wu, B. Zhang, “Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material,” Progress in Natural Science: Materials International, vol. 27, no. 4, 503–506, 2017, doi: https://doi.org/10.1016/j.pnsc.2017.08.004
  21. Y. Dong, R. Wunderlich, J. Biskupek, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang, H. J. Fecht, “Co content effect on elastic strain limit in ZrCuNiAlCo bulk metallic glasses,” Scripta Materialia, vol. 137, pp. 94–99 2017, doi: https://doi.org/10.1016/j.scriptamat.2017.05.007
  22. M.A.B. Mendes, A.K. Melle, C.A.C. de Souza, C.S. Kiminami, R.D. Cava, C. Bolfarini, W.J. Botta Filho, “The Effect of Cr Content on the Glass Forming Ability of Fe68-xCrxNb8B24 (x =8,10,12) Alloys,” Materials Research, vol.19, pp. 92–96, 2016, doi: https://doi.org/10.1590/1980-5373-MR-2016-0290
  23. J. T. Kim, S. H. Hong, C. H. Lee, J.M. Park, T. W. Kim, W. H. Lee, H.I. Yim, K. B. Kim, “Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation,” Journal of Alloys and Compounds, vol. 587, pp.415–419, 2014, doi: https://doi.org/10.1016/j.jallcom.2013.10.097
  24. M.G. Nabialek, M. Szota, M.J. Dospial, “Effect of Co on the microstructure, magnetic properties and thermal stability of bulk Fe73−xCoxNb5Y3B19 (where x=0 or 10) amorphous alloys,” Journal of Alloys and Compounds, vol. 526 pp. 68–73, doi: https://doi.org/10.1016/j.jallcom.2012.02.106
  25. H. Li, Y. Lu, Z. Qin, X. Lu, “Vibrational properties of FeCoCrMoCBY bulk metallic glasses and their correlation with glass-forming ability,” Vacuum, vol. 133 pp. 105–107, 2016, doi: https://doi.org/10.1016/j.vacuum.2016.08.012
  26. P. Tiberto, R. Piccin, N. Lupu, H. Chiriac, M. Baricco, “Magnetic properties of Fe–Co-based bulk metallic glasses,” Journal of Alloys and Compounds, 483, 608–612, 2009, doi: https://doi.org/10.1016/j.jallcom.2008.08.085
  27. H.Y. Jung, M. Stoica, S. Yi, D.H. Kim, J. Eckert, “Electrical and magnetic properties of Fe-based bulk metallic glass with minor Co and Ni addition,” Journal of Magnetism and Magnetic Materials, vol. 364, pp. 80–84, 2014, doi: https://doi.org/10.1016/j.jmmm.2014.04.028
  28. F. Wang, A. Inoue, F.L. Kong, Y. Han, S.L. Zhu, E. Shalaan, F. Al-Marouki, “Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys,” Journal of Alloys and Compounds, vol. 732, pp. 637–645, 2018, doi: https://doi.org/10.1016/j.jallcom.2020.153858
  29. Z.B. Jiao, H.X. Li, J.E. Gao, Y. Wu, Z.P. Lu, “Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses,” Intermetallics, vol. 19, pp. 1502–1508. 2011, doi: https://doi.org/10.1016/j.intermet.2011.05.020
  30. M. Stoica, J. Eckert, S. Roth, Z.F. Zhang, L. Schultz, W.H. Wang, “Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass,” Intermetallics, vol. 13, pp. 764–769, 2005, doi: https://doi.org/10.1016/j.intermet.2004.12.016