Publicado 2023-06-11
Palabras clave
- Quantum theory,
- Canonical quantization,
- Second order transformation,
- Bogoliubov-deGennes,
- Superconductivity
Cómo citar
Derechos de autor 2023 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
En el presente trabajo mostramos las generalidades de la teoría clásica de campos (CFT), estudiamos su extensión a la teoría cuántica de campos (QFT), donde como ejemplo de análisis numérico y combinación con la técnica de la teoría de campos, resolveremos un sistema tipo Klein-Gordon (KGS) en dos dimensiones espacio temporales (1+1) estudiando su estabilidad mediante el parámetro espectral λ(k), principio de convergencia debido a los parámetros de la red numérica y la solución para el campo ф (x;t), obteniendo resultados novedosos. Además, analizamos brevemente la técnica de operadores de Escalera creación y destrucción desde la perspectiva del oscilador armónico cuántico, para definir algunas propiedades y extensiones al problema en cuantización canónica. Finalmente, aplicamos los temas estudiados a un problema de superconductividad no convencional en compuestos Niquelatos solucionando el sistema de Ecuaciones de Bogoliubov-deGennes (BdG) en la expansión media del campo, obteniendo la banda energética superconductora.
Descargas
Referencias
- H. Goldstein, J. L. Safko, C. P. Poole, Classical Mechanics: Pearson New International Edition. Pearson Education, 2014. [Online]. Available: https://books.google.com.co/books?id=Xr-pBwAAQBAJ
- F. Scheck, Mechanics: From Newton’s Laws to Deterministic Chaos. World Publishing Corporation, 1990. [Online]. Available: https://books.google.com.co/books?id=TgfyAAAAMAAJ
- S. T. Thornton, J. B. Marion, Classical Dynamics of Particles and Systems. Brooks/Cole, 2007. [Online]. Available: https://books.google.com.co/books?id=30rWGAAACAAJ
- E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, 1988. [Online]. Available: https://books.google.com.co/books?id=epH1hCB7N2MC
- R. Weinstock, Calculus of Variations: With Applications to Physics and Engineering. Dover Publications, 1974. [Online]. Available: https://books.google.com.co/books?id=6wSVuWH1PrsC
- R. Courant, D. Hilbert, Methods of Mathematical Physics. 1991.
- A. Zee, Quantum Field Theory in a Nutshell. Princeton University Press, 2003.
- W. F. Ammes, Numerical Methods for Partial Differential Equations. 2014.
- J. Kiusalaas, Numerical Methods in Engineering with MATLAB. Cambridge University Press, 2015.
- J. H. Mathews, K. D. Fink, Numerical Methods Using MATLAB. Prentice Hall, 1999. [Online]. Available: https://books.google.com.co/books?id=F1sZAQAAIAAJ
- S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists.
- J. A. Trangenstein, Numerical Solution of Hyperbolic Partial Differential Equations. Cambridge University Press, 2009. [Online]. Available: https://books.google.com.co/books?id=%5C_nlbj1cUgZgC
- S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods. Springer, 2003. [Online]. Available: https://books.google.com.co/books?id=mrmxylxQlPUC
- Y. Zhu, B. Guo, Numerical methods for partial differential equations: proceedings of a conference held in Shanghai, PR China, March 25-29, 1987, vol. 1297. Springer, 2006.
- T,Roubíček, Nonlinear Partial Differential Equations with Applications, vol. 153. Basel: Birkhäuser-Verlag, 2005. doi: https://doi.org/10.1007/3-7643-7397-0
- M. Dehghan, A. Shokri, “Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions,” J. Comput. Appl. Math., vol. 230, no. 2, pp. 400–410, 2009, doi: https://doi.org/10.1016/j.cam.2008.12.011
- D. Huang, G. Zou, L. W. Zhang, “Numerical Approximation of Nonlinear Klein-Gordon Equation Using an Element-Free Approach,” Math. Probl. Eng., vol. 2015, p. 548905, 2015, doi: https://doi.org/10.1155/2015/548905
- A. M. Wazwaz, “Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations,” Chaos, Solitons & Fractals, vol. 28, no. 4, pp. 1005–1013, 2006, doi: https://doi.org/10.1016/j.chaos.2005.08.145
- A. S. Botana, F. Bernardini, A. Cano, “Nickelate Superconductors: An Ongoing Dialog between Theory and Experiments,” J. Exp. Theor. Phys., vol. 132, no. 4, pp. 618–627, 2021, doi: https://doi.org/10.1134/S1063776121040026
- V. M. Katukuri, N. A. Bogdanov, O. Weser, J. van den Brink, A. Alavi, “Electronic correlations and magnetic interactions in infinite-layer NdNiO2,” Phys. Rev. B, vol. 102, no. 24, p. 241112, 2020, doi: https://doi.org/10.1103/PhysRevB.102.241112
- J. G. Bednorz, K. A. Müller, “Possible highTc superconductivity in the Ba−La−Cu−O system,” Zeitschrift für Phys. B Condens. Matter, vol. 64, no. 2, pp. 189–193, 1986, doi: https://doi.org/10.1007/BF01303701
- V. I. Anisimov, D. Bukhvalov, T. M. Rice, “Electronic structure of possible nickelate analogs to the cuprates,” Phys. Rev. B, vol. 59, no. 12, pp. 7901–7906, Mar. 1999, doi: https://doi.org/10.1103/PhysRevB.59.7901
- K. W. Lee and W. E. Pickett, “Infinite-layer LaNiO2:Ni1+ is notCu2+,” Phys. Rev. B, vol. 70, no. 16, p. 165109, 2004, doi: https://doi.org/10.1103/PhysRevB.70.165109
- M. Sarboland, A. Aminataei, “Numerical Solution of the Nonlinear Klein-Gordon Equation Using Multiquadric Quasi-interpolation Scheme,” Universal Journal of Applied Mathematics, 2015, doi: https://doi.org/10.13189/ujam.2015.030302
- C. J. Pethick, D. Pines, “Transport processes in heavy-fermion superconductors,” Phys. Rev. Lett., vol. 57, no. 1, pp. 118–121, 1986, doi: https://doi.org/10.1103/PhysRevLett.57.118
- Y. Gu, S. Zhu, X. Wang, J. Hu, H. Chen, “A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates,” Commun. Phys., vol. 3, no. 1, p. 84, 2020, doi: https://doi.org/10.1038/s42005-020-0347-x
- E. M. Nica, J. Krishna, R. Yu, Q. Si, A. S. Botana, O. Erten, “Theoretical investigation of superconductivity in trilayer square-planar nickelates,” Phys. Rev. B, vol. 102, no. 2, p. 20504, 2020, doi: https://doi.org/10.1103/PhysRevB.102.020504
- S. W. Zeng et al., “Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd(0.8)Sr(0.2)NiO(2) superconductors.,” Nat. Commun., vol. 13, no. 1, p. 743, 2022, doi: https://doi.org/10.1038/s41467-022-28390-w
- D. Ferenc Segedin et al., “Limits to the strain engineering of layered square-planar nickelate thin films,” Nat. Commun., vol. 14, no. 1, p. 1468, 2023, doi: https://doi.org/10.1038/s41467-023-37117-4
- C. A. Aguirre, M. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Rev. UIS Ing., vol. 19, no. 1, pp. 109–115, 2020, doi: https://doi.org/10.18273/revuin.v19n1-2020011
- C. Aguirre-Tellez, M. Rincón-Joya, J. J. Barba-Ortega, “Released power in a vortex-antivortex pairs annihilation process,” Rev. UIS Ing., vol. 20, no. 1, 2020, doi: https://doi.org/10.18273/revuin.v20n1-2021014
- C. A. Aguirre-Tellez, E. D. Valbuena-Niño, J. J. Barba-Ortega, “Estado de vórtices en un cuadrado superconductor de dos-orbitales con condiciones de contorno mixtas,” Rev. Ingenio, vol. 15, no. 1, pp. 38–43, 2018, doi: https://doi.org/10.22463/2011642X.3118
- N. B. Kopnin, T. T. Heikkilä, G. E. Volovik, “High-temperature surface superconductivity in topological flat-band systems,” Phys. Rev. B, vol. 83, no. 22, p. 220503, 2011, doi: https://doi.org/10.1103/PhysRevB.83.220503
- V. J. Kauppila, F. Aikebaier, T. T. Heikkilä, “Flat-band superconductivity in strained Dirac materials,” Phys. Rev. B, vol. 93, no. 21, p. 214505, 2016, doi: https://doi.org/10.1103/PhysRevB.93.214505
- V. Peri, Z.-D. Song, B. A. Bernevig, S. D. Huber, “Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime,” Phys. Rev. Lett., vol. 126, no. 2, p. 27002, 2021, doi: https://doi.org/10.1103/PhysRevLett.126.027002
- V. I. Iglovikov, F. Hébert, B. Grémaud, G. G. Batrouni, R. T. Scalettar, “Superconducting transitions in flat-band systems,” Phys. Rev. B, vol. 90, no. 9, p. 94506, 2014, doi: https://doi.org/10.1103/PhysRevB.90.094506
- Z. S. Yang, A. M. Ferrenti, R. J. Cava, “Testing whether flat bands in the calculated electronic density of states are good predictors of superconducting materials,” J. Phys. Chem. Solids, vol. 151, p. 109912, 2021, doi: https://doi.org/10.1016/j.jpcs.2020.109912