Vol. 23 Núm. 2 (2024): Revista UIS Ingenierías
Artículos

Caracterización estructural de zonas de acceso a edificaciones educativas utilizando mediciones de vibraciones

Cristian Moreno
Universidad Industrial de Santander
Wilson Hernández
Universidad Industrial de Santander
Gustavo Chio-Cho
Universidad Industrial de Santander
Alvaro Viviescas
Universidad Industrial de Santander
Carlos Alberto Riveros-Jerez
Universidad de Antioquia

Publicado 2024-04-01

Palabras clave

  • vibración ambiental,
  • vibración forzada,
  • simulaciones numéricas,
  • óptima ubicación de sensores,
  • actualización modelo numérico

Cómo citar

Moreno, C., Hernández , W. ., Chio-Cho, G., Viviescas, A., & Riveros-Jerez, C. A. (2024). Caracterización estructural de zonas de acceso a edificaciones educativas utilizando mediciones de vibraciones. Revista UIS Ingenierías, 23(2), 1–16. https://doi.org/10.18273/revuin.v23n2-2024001

Resumen

Un gran número de edificaciones educativas de universidades públicas colombianas requieren con urgencia intervenciones de reforzamiento estructural. Sin embargo, por las consideraciones de urbanismo de la gran mayoría de las ciudadelas universitarias, estas edificaciones educativas se encuentran separadas entre sí por zonas verdes y estructuras de acceso, donde estas últimas se caracterizan generalmente por falta de información en sus condiciones de contorno y propiedades de los materiales, con el agravante que en muchos casos se encuentran conectadas estructuralmente con edificaciones educativas. Este artículo presenta una metodología de caracterización estructural de una estructura de acceso de edificaciones educativas localizada en la sede de la Universidad Industrial de Santander. Pruebas en campo de vibración ambiental permiten estudiar la influencia de las condiciones de contorno. Finalmente, la implementación de un algoritmo de óptima localización de sensores y pruebas numéricas de vibración forzada permiten validar la consistencia de la metodología propuesta en este artículo.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. AIS Asociación Colombiana de Ingeniería Sísmica, “Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente,” Reglam. Colomb. Construcción Sismo Resist. NSR-10, vol. Titulo A, pp. 1–174, 2010.
  2. Uroš, M.; Demšić, M.; Baniček, M.; Pilipović, “A. Seismic Retrofitting of Dual Structural Systems—A Case Study of an Educational Building in Croatia,” Buildings, vol. 13, p. 292, 2023, doi: https://doi.org/10.3390/buildings13020292
  3. S. Kashif Ur Rehman, Z. Ibrahim, S. A. Memon, M. Jameel, “Nondestructive test methods for concrete bridges: A review,” Constr. Build. Mater., vol. 107, pp. 58–86, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2015.12.011
  4. J. M. W. Brownjohn, F. Magalhaes, E. Caetano, A. Cunha, “Ambient vibration re-testing and operational modal analysis of the Humber Bridge,” Eng. Struct., vol. 32, no. 8, pp. 2003–2018, 2010, doi: https://doi.org/10.1016/j.engstruct.2010.02.034
  5. F. Magalhães, E. Caetano, Á. Cunha, O. Flamand, G. Grillaud, “Ambient and free vibration tests of the Millau Viaduct: Evaluation of alternative processing strategies,” Eng. Struct., vol. 45, pp. 372–384, 2012, doi: https://doi.org/10.1016/j.engstruct.2012.06.038
  6. E. Muñoz, F. Núñez, J. A. Rodríguez, A. Ramos, C. Otálora, “Seismic vulnerability and loading capacity of a wire strained bridge based on structural reliability,” Rev. Ing. Constr., vol. 25, no. 2, pp. 285–323, 2010, doi: https://doi.org/10.4067/S0718-50732010000200006
  7. J. Malveiro, D. Ribeiro, C. Sousa, R. Calçada, “Model updating of a dynamic model of a composite steel-concrete railway viaduct based on experimental tests,” Eng. Struct., vol. 164, no. October 2017, pp. 40–52, 2018, doi: https://doi.org/10.1016/j.engstruct.2018.02.057
  8. F. Benedettini, M. Dilena, A. Morassi, “Vibration analysis and structural identification of a curved multi-span viaduct,” Mech. Syst. Signal Process., vol. 54, pp. 84–107, 2015, doi: https://doi.org/10.1016/j.ymssp.2014.08.008
  9. J. M. W. Brownjohn, “Structural health monitoring of civil infrastructure,” Philos. Trans. R. Soc., no. May 2009, pp. 589–622, 2007, doi: https://doi.org/10.1098/rsta.2006.1925
  10. P. Pachón, R. Castro, E. García-Macías, V. Compan, E. Puertas, “E. Torroja’s bridge: Tailored experimental setup for SHM of a historical bridge with a reduced number of sensors,” Eng. Struct., vol. 162, no. September 2017, pp. 11–21, 2018, doi: https://doi.org/10.1016/j.engstruct.2018.02.035
  11. M. Domaneschi, A. Zamani Noori, M. V. Pietropinto, G. P. Cimellaro, “Seismic vulnerability assessment of existing school buildings,” Comput. Struct., vol. 248, p. 106522, 2021, doi: 1 https://doi.org/0.1016/j.compstruc.2021.106522
  12. S. Kacin, H. C. Yilmaz, C. V. Caglar, “Determination to the period of a school building before and after its retrofitting using ambient vibration records,” Turkish J. Eng., vol. 6, no. 2, pp. 156–160, 2022, doi: https://doi.org/10.31127/tuje.873050
  13. F. Gara, S. Carbonari, D. Roia, A. Balducci, L. Dezi, “Seismic Retrofit Assessment of a School Building through Operational Modal Analysis and f.e. Modeling,” J. Struct. Eng., vol. 147, no. 1, pp. 1–12, 2021, doi: https://doi.org/10.1061/(asce)st.1943-541x.0002865
  14. D. C. Kammer, “Sensor Placement for On Orbit Modal Identification and Correlation of Large Space Structures,” J. Guid. Control. Dyn., vol. 14, no. 2, pp. 251–259, 1991, doi: https://doi.org/10.2514/3.20635
  15. P. Omenzetter et al., “Forced and ambient vibration Testing of Full Scale Bridges,” Aberdeen, 2013. doi: https://doi.org/10.13140/2.1.1168.5448
  16. J. D. Cryer, J. S. Bendat, and A. G. Piersol, Random Data. Analysis and Measurement Procedures, 4th ed., vol. 82, no. 400. New Jersey: Wiley, 2010.
  17. C. Riveros, E. García, J. Rivero Jerez, “A comparative study of sensor placement techniques for structural damage detection,” Rev. EIA, no. 20, pp. 23–37, 2013, doi: https://doi.org/10.14508/reia.2013.10.20.23-37
  18. C. Farrar, M. Todd, E. Flynn, D. Harvey, “SHMTools Software.” Los Alamos National Laboratory, New Mexico, p. 199, 2010, [Online]. Available: https://www.lanl.gov/projects/national-security-education-center/engineering/software/shm-data-sets-and-software.php.
  19. M. F. Green, “Modal test methods for bridges: A review,” Conf. 1995 IMAC XIII – 13th Int. Modal Anal. Conf., pp. 552–558, 1995.
  20. F. J. Carrion viramontes, A. Lozano Guzman, M. de J. Fabela Gallegos, D. Vazque Vega, A. Romero Navarrete, “Evaluación de Puentes Mediante el Análisis de Vibraciones,” Instituto mexicano del transporte, Publicación técnica, no.139. 1999.
  21. R. Cantieni, “Experimental methods used in system identification of civil engineering structures,” Proc. 1st Int. Oper. Modal Anal. Conf. IOMAC 2005, pp. 10–11, 2005.
  22. J. Brownjohn, M. Bocian, D. Hester, “Forced vibration testing of footbridges using calibrated human shaker and wireless sensors,” Procedia Eng., vol. 199, pp. 417–422, 2017, doi: https://doi.org/10.1016/j.proeng.2017.09.134
  23. S. Ivorra, D. Foti, D. Bru, and F. J. Baeza, “Dynamic behavior of a pedestrian bridge in Alicante, Spain,” J. Perform. Constr. Facil., vol. 29, no. 5, pp. 1–10, 2015, doi: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000556
  24. A. Gonzalez de la Rubia, “La zancada paso a paso,” Corricolari, vol. 16, no. 1, pp. 44–47, 2013.
  25. R. Pamies Vila, J. M. Font Llagunes, J. Kövecses, “Análisis dinámico del impacto pie-suelo en el correr,” Congr. Nac. Ing. Mecánica, pp. 1–8, 2014.