Revisión sistemática de nanocompuestos obtenidos por técnicas de fotopolimerización VAT: un enfoque de evaluación de costos y ciclo de vida térmicos
Publicado 2023-03-21
Palabras clave
- nanocompuesto,
- impresión 3D,
- manufactura aditiva,
- estereolitografía,
- DLP
- costos,
- LCA ...Más
Cómo citar
Derechos de autor 2023 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
La manufactura aditiva ha demostrado poseer ventajas en la fabricación de nanocompuestos. A pesar de que la fotopolimerización-VAT es una de las primeras tecnologías desarrolladas de impresión 3D, el alto costo de los dispositivos la hizo una tecnología de difícil acceso. La producción masiva de estos dispositivos en los últimos años ha abierto esta tecnología a todo el mundo. La estereolitografía (SLA) y el procesamiento digital de luz (DLP) son las tecnologías más prominentes usadas en este campo. En esta revisión sistemática se estudiaron 217 artículos relacionados con las técnicas SLA y DLP para la manufactura aditiva de nanocompuestos. El principal hallazgo de esta revisión sistemática es la necesidad futura de investigación en economía circular y evaluación del ciclo de vida de los procesos SLA y DLP. De igual manera, se recomienda una discusión más profunda respecto al costo de los dispositivos y los materiales para poder tener una visión más detallada del costo final de los nanocompuestos obtenidos por fotopolimerización.
Descargas
Referencias
- I. Gibson, D. W. Rosen, B. Stucker, Additive Manufacturing Technologies. Boston, MA: Springer US, 2010, doi: https://doi.org/10.1007/978-1-4419-1120-9
- A. Medellin, W. Du, G. Miao, J. Zou, Z. Pei, C. Ma, “Vat Photopolymerization 3D Printing of Nanocomposites: A Literature Review,” J. Micro Nano-Manufacturing, vol. 7, no. 3, Sep. 2019, doi: https://doi.org/10.1115/1.4044288
- J. I. Park, G.Y. Lee, J. Yang, C.S. Kim, S. H. Ahn, “Flexible ceramic-elastomer composite piezoelectric energy harvester fabricated by additive manufacturing,” J. Compos. Mater., vol. 50, no. 12, pp. 1573–1579, 2016, doi: https://doi.org/10.1177/0021998315577685
- K. Agarwal, S. K. Kuchipudi, B. Girard, M. Houser, “Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods,” J. Compos. Mater., vol. 52, no. 23, pp. 3173–3181, 2018, doi: https://doi.org/10.1177/0021998318762297
- J. I. Lipton, M. Cutler, F. Nigl, D. Cohen, H. Lipson, “Additive manufacturing for the food industry,” Trends Food Sci. Technol., vol. 43, no. 1, pp. 114–123, May 2015, doi: https://doi.org/10.1016/j.tifs.2015.02.004
- M. Valente, A. Sibai, and M. Sambucci, “Extrusion-Based Additive Manufacturing of Concrete Products: Revolutionizing and Remodeling the Construction Industry,” J. Compos. Sci., vol. 3, no. 3, p. 88, Sep. 2019, doi: https://doi.org/10.3390/jcs3030088
- L. A. Vergara, H. A. Colorado, “Additive manufacturing of Portland cement pastes with additions of kaolin, superplastificant and calcium carbonate,” Constr. Build. Mater., vol. 248, p. 118669, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.118669
- T. S. Preview, “International Standard ISO / ASTM Additive manufacturing — General principles — Terminology iTeh STANDARD PREVIEW,” vol. 5, 2015, [Online]. Available: https://standards.iteh.ai/catalog/standards/sist/d9adc3ce-ca51-4c21-b508-00fbbe01687d/iso-astm-52900-2015
- PWC, 2021, [Online]. Available: http://www.pwc.com/us/en/industrialproducts/assets/3d-printing-next_manufacturing-chartpack-pwc.pdf
- L. Cavallo, A. Marcianò, M. Cicciù, G. Oteri, “3D Printing beyond Dentistry during COVID 19 Epidemic: A Technical Note for Producing Connectors to Breathing Devices,” Prosthesis, vol. 2, no. 2, pp. 46–52, Apr. 2020.
- F. P. W. Melchels, J. Feijen, D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials, vol. 31, no. 24, pp. 6121–6130, Aug. 2010, doi: https://doi.org/10.1016/j.biomaterials.2010.04.050
- F. Ganovelli, M. Corsini, S. Pattanaik, M. Di Benedetto, Introduction to Computer Graphics. Chapman and Hall/CRC, 2014, doi: https://doi.org/10.1201/b15978
- R. Attfield, “Sustainability, Global Warming, Population Policies and Liberal Democracy,” in Sustaining Liberal Democracy, London: Palgrave Macmillan UK, 2001, pp. 149–160, doi: https://doi.org/10.1057/9781403900791_9
- M. Baumers, C. Tuck, D. L. Bourell, R. Sreenivasan, R. Hague, “Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 225, no. 12, pp. 2228–2239, Dec. 2011, doi: https://doi.org/10.1177/0954405411406044
- H. A. Colorado, E. I. G. Velásquez, and S. N. Monteiro, “Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 8221–8234, Jul. 2020, doi: https://doi.org/10.1016/j.jmrt.2020.04.062
- H. Gu et al., “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” RSC Adv., vol. 2, no. 29, p. 11007, 2012, doi: https://doi.org/10.1039/c2ra21991c
- J. Zhu et al., “Magnetic nanocomposites for environmental remediation,” Adv. Powder Technol., vol. 24, no. 2, pp. 459–467, Mar. 2013, doi: https://doi.org/10.1016/j.apt.2012.10.012
- J. A. Vara, P. N. Dave, and V. R. Ram, “Nanomaterials as modifier for composite solid propellants,” Nano-Structures & Nano-Objects, vol. 20, p. 100372, Oct. 2019, doi: https://doi.org/10.1016/j.nanoso.2019.100372
- S. S. Rao, “Hierarchical nanospheres of NiCoS/NF for high-performance supercapacitors,” Nano-Structures & Nano-Objects, vol. 19, p. 100366, Jul. 2019, doi: https://doi.org/10.1016/j.nanoso.2019.100366
- R. D. Farahani, M. Dubé, D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater., vol. 28, no. 28, pp. 5794–5821, Jul. 2016, doi: https://doi.org/10.1002/adma.201506215
- Y. Zhang et al., “Additive manufacturing of carbon nanotube-photopolymer composite radar absorbing materials,” Polym. Compos., vol. 39, no. S2, pp. E671–E676, May 2018, doi: https://doi.org/10.1002/pc.24117
- K. Kim et al., “3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials,” ACS Nano, vol. 8, no. 10, pp. 9799–9806, Oct. 2014, doi: https://doi.org/10.1021/nn503268f
- A. Morelli, D. Puppi, and F. Chiellini, “Polymers from Renewable Resources,” J. Renew. Mater., vol. 1, no. 2, pp. 83–112, Apr. 2013, doi: https://doi.org/10.7569/JRM.2012.634106
- N. Matsuhisa et al., “Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes,” Nat. Mater., vol. 16, no. 8, pp. 834–840, Aug. 2017, doi: https://doi.org/10.1038/nmat4904
- P. Rastogi and B. Kandasubramanian, “Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing,” Chem. Eng. J., vol. 366, pp. 264–304, Jun. 2019, doi: https://doi.org/10.1016/j.cej.2019.02.085
- P. Mohanty, R. Mahapatra, P. Padhi, C. V. V. Ramana, and D. K. Mishra, “Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review,” Nano-Structures & Nano-Objects, vol. 23, p. 100475, Jul. 2020, doi: https://doi.org/10.1016/j.nanoso.2020.100475
- D. Tranfield, D. Denyer, and P. Smart, “Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review,” Br. J. Manag., vol. 14, no. 3, pp. 207–222, 2003, doi: https://doi.org/10.1111/1467-8551.00375
- A. Paesano, “Polymeric Additive Manufacturing : Present Status and Future Trends of Materials and Processes,” 2016.
- P. H. Lee, H. Chung, S. W. Lee, J. Yoo, and J. Ko, “Review: Dimensional Accuracy in Additive Manufacturing Processes,” in Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing, Jun. 2014. doi: https://doi.org/10.1115/MSEC2014-4037
- J. Deckers, J. Vleugels, and J. P. Kruth, “Additive manufacturing of ceramics: A review,” J. Ceram. Sci. Technol., vol. 5, no. 4, pp. 245–260, 2014, doi: https://doi.org/10.4416/JCST2014-00032
- P. M. Dickens, “Research Developments in Rapid Prototyping,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 209, no. 4, pp. 261–266, 1995, doi: https://doi.org/10.1243/PIME_PROC_1995_209_082_02
- A. S. De León and S. I. Molina, “Influence of the Degree of Cure in the Bulk Properties of Graphite Nanoplatelets Nanocomposites Printed via Stereolithography,” Polymers (Basel), vol. 12, no. 5, p. 1103, May 2020, doi: https://doi.org/10.3390/polym12051103
- J. Li, C. Wu, P. K. Chu, and M. Gelinsky, “3D printing of hydrogels: Rational design strategies and emerging biomedical applications,” Mater. Sci. Eng. R Reports, vol. 140, p. 100543, Apr. 2020, doi: https://doi.org/10.1016/j.mser.2020.100543
- B. Wang et al., “A physical and chemical double enhancement strategy for 3D printing of cellulose reinforced nanocomposite,” J. Appl. Polym. Sci., vol. 137, no. 39, p. 49164, Oct. 2020, doi: https://doi.org/10.1002/app.49164
- J. O. Palaganas, N. B. Palaganas, L. J. I. Ramos, and C. P. C. David, “3D Printing of Covalent Functionalized Graphene Oxide Nanocomposite via Stereolithography,” ACS Appl. Mater. Interfaces, vol. 11, no. 49, pp. 46034–46043, Dec. 2019, doi: https://doi.org/10.1021/acsami.9b12071
- D. Mohan, M. S. Sajab, H. Kaco, S. B. Bakarudin, and A. Mohamed Noor, “3D Printing of UV-Curable Polyurethane Incorporated with Surface-Grafted Nanocellulose,” Nanomaterials, vol. 9, no. 12, p. 1726, Dec. 2019, doi: https://doi.org/10.3390/nano9121726
- Y. Zuo, Z. Yao, H. Lin, J. Zhou, J. Lu, and J. Ding, “Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption,” Compos. Part B Eng., vol. 179, p. 107533, Dec. 2019, doi: https://doi.org/10.1016/j.compositesb.2019.107533
- G. Taormina, C. Sciancalepore, F. Bondioli, and M. Messori, “Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles,” Polymers (Basel), vol. 10, no. 2, p. 212, Feb. 2018, doi: https://doi.org/10.3390/polym10020212
- J. Z. Manapat, J. D. Mangadlao, B. D. B. Tiu, G. C. Tritchler, and R. C. Advincula, “High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability,” ACS Appl. Mater. Interfaces, vol. 9, no. 11, pp. 10085–10093, Mar. 2017, doi: https://doi.org/10.1021/acsami.6b16174
- N. B. Palaganas et al., “3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography,” ACS Appl. Mater. Interfaces, vol. 9, no. 39, pp. 34314–34324, Oct. 2017, doi: https://doi.org/10.1021/acsami.7b09223
- M. A. Geven et al., “Fabrication of patient specific composite orbital floor implants by stereolithography,” Polym. Adv. Technol., vol. 26, no. 12, pp. 1433–1438, Dec. 2015, doi: https://doi.org/10.1002/pat.3589
- J. Z. Manapat, Q. Chen, P. Ye, and R. C. Advincula, “3D Printing of Polymer Nanocomposites via Stereolithography,” Macromol. Mater. Eng., vol. 302, no. 9, p. 1600553, Sep. 2017, doi: https://doi.org/10.1002/mame.201600553
- X. Feng, Z. Yang, S. Chmely, Q. Wang, S. Wang, and Y. Xie, “Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization,” Carbohydr. Polym., vol. 169, pp. 272–281, Aug. 2017, doi: https://doi.org/10.1016/j.carbpol.2017.04.001
- M. Gurr, Y. Thomann, M. Nedelcu, R. Kübler, L. Könczöl, R. Mülhaupt, “Novel acrylic nanocomposites containing in-situ formed calcium phosphate/layered silicate hybrid nanoparticles for photochemical rapid prototyping, rapid tooling and rapid manufacturing processes,” Polymer (Guildf)., vol. 51, no. 22, pp. 5058–5070, Oct. 2010, doi: https://doi.org/10.1016/j.polymer.2010.08.026
- S. Mubarak et al., “Enhanced Mechanical and Thermal Properties of Stereolithography 3D Printed Structures by the Effects of Incorporated Controllably Annealed Anatase TiO2 Nanoparticles,” Nanomaterials, vol. 10, no. 1, p. 79, 2020, doi: https://doi.org/10.3390/nano10010079
- H. Wu et al., “Recent developments in polymers/polymer nanocomposites for additive manufacturing,” Prog. Mater. Sci., vol. 111, p. 100638, Jun. 2020, doi: https://doi.org/10.1016/j.pmatsci.2020.100638
- Z. Feng et al., “Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds,” J. Nanomater., vol. 2019, pp. 1–13, Apr. 2019, doi: https://doi.org/10.1155/2019/9710264
- J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, Mar. 2018, doi: https://doi.org/10.1016/j.addma.2017.12.002
- C. K. Daniel Küpper, Wilderich Heising, Gero Corman, Meldon Wolfgang and V. Lukic, “Get Ready for Industrialized Additive Manufacturing.” The Boston Consulting Group (BCG), p. 19, 2017. [Online]. Available: https://www.bcg.com/publications/2017/lean-manufacturing-industry-4.0-get-ready-for-industrialized-additive-manufacturing
- J. Guinée et al., Handbook on LCA, operational guide to the ISO standards. 2002.
- C. Bressot et al., “Sanding and analysis of dust from nano-silica filled composite resins for stereolithography,” Chem. Eng. Res. Des., vol. 156, pp. 23–30, Apr. 2020, doi: https://doi.org/10.1016/j.cherd.2020.01.011
- H. A. Balogun, R. Sulaiman, S. S. Marzouk, A. Giwa, and S. W. Hasan, “3D printing and surface imprinting technologies for water treatment: A review,” J. Water Process Eng., vol. 31, p. 100786, Oct. 2019, doi: https://doi.org/10.1016/j.jwpe.2019.100786
- A. Zhakeyev, P. Wang, L. Zhang, W. Shu, H. Wang, and J. Xuan, “Additive Manufacturing: Unlocking the Evolution of Energy Materials,” Adv. Sci., vol. 4, no. 10, p. 1700187, Oct. 2017, doi: https://doi.org/10.1002/advs.201700187
- M. R. Khosravani and T. Reinicke, “On the environmental impacts of 3D printing technology,” Appl. Mater. Today, vol. 20, p. 100689, Sep. 2020, doi: https://doi.org/10.1016/j.apmt.2020.100689
- A. Locker, “Wanhao Duplicator 7 (D7) Plus 3d Printer – Review The Specs,” 2019. https://all3dp.com/1/wanhao-duplicator-7-d7-plus-3d-printer-review/
- EnvisionTEC, “EnvisionTEC Perfactory 3 Mini Multi Lens overview.” https://www.aniwaa.com/product/3d-printers/envisiontec-perfactory-3-mini-multi-lens/
- Form Labs[Internet].Somerville, USA. Available from: https://archive-media.formlabs.com/upload/Form-1plus-overview-US.pdf
- FormLabs, “Formlabs Form 1+ overview.” https://www.aniwaa.com/product/3d-printers/formlabs-form1-2/
- A. Locker, “Formlabs Form 2 Review: Great Resin 3D Printer.” https://all3dp.com/formlabs-form-2-review-price-sla-3d-printer/
- Anycubic, “Anycubic Photon.” https://www.anycubic.com/products/anycubicphoton-3d-printer.
- A. Olivera-Castillo, E. Chica-Arrieta, and H. Colorado-Lopera, “Manufacturing processes, life cycle analysis, and future challenges for wind turbine blades,” Rev. UIS Ing., vol. 21, no. 4, Oct. 2022, doi: https://doi.org/10.18273/revuin.v21n4-2022002