Vol. 22 No. 2 (2023): Revista UIS Ingenierías
Articles

Systematic overview of nanocomposites obtained by VAT photopolymerization techniques: A cost and life cycle assessment approach

León D. Gil
Universidad de Antioquia
Italo L. de Camargo
Federal Institute of Education, Science and Technology of São Paulo
Elkin I. Gutiérrez -Velásquez
Fundación Universitaria Los Libertadores
Henry A. Colorado
Universidad de Antioquia

Published 2023-03-21

Keywords

  • nanocomposite,
  • 3D-printing,
  • additive manufacture,
  • stereolithography,
  • DLP,
  • costs,
  • LCA
  • ...More
    Less

How to Cite

Gil , L. D. ., de Camargo , I. L. ., Gutiérrez -Velásquez , E. I. ., & Colorado , H. A. . (2023). Systematic overview of nanocomposites obtained by VAT photopolymerization techniques: A cost and life cycle assessment approach. Revista UIS Ingenierías, 22(2), 1–14. https://doi.org/10.18273/revuin.v22n2-2023001

Abstract

Additive manufacturing has shown advantages for nanocomposite fabrication. Despite VAT-photopolymerization being one of the first developed 3D printing technologies, high device costs made it a technology that was difficult to access. The massive production of these devices in recent years has opened this technology to everyone. Stereolithography and Digital light processing are the most prominent technologies used in this field. This systematic review studied 217 articles regarding SLA and DLP for additive manufacture of nanocomposites. The main finding of this systematic review shows that further research on circular economy and life cycle assessment of the SLA and DLP technologies is urgently needed. Also, a deeper discussion on the technology and material costs is recommended in order to give a more detailed insight on the final cost of these 3D-printed nanocomposites.

Downloads

Download data is not yet available.

References

  1. I. Gibson, D. W. Rosen, B. Stucker, Additive Manufacturing Technologies. Boston, MA: Springer US, 2010, doi: https://doi.org/10.1007/978-1-4419-1120-9
  2. A. Medellin, W. Du, G. Miao, J. Zou, Z. Pei, C. Ma, “Vat Photopolymerization 3D Printing of Nanocomposites: A Literature Review,” J. Micro Nano-Manufacturing, vol. 7, no. 3, Sep. 2019, doi: https://doi.org/10.1115/1.4044288
  3. J. I. Park, G.Y. Lee, J. Yang, C.S. Kim, S. H. Ahn, “Flexible ceramic-elastomer composite piezoelectric energy harvester fabricated by additive manufacturing,” J. Compos. Mater., vol. 50, no. 12, pp. 1573–1579, 2016, doi: https://doi.org/10.1177/0021998315577685
  4. K. Agarwal, S. K. Kuchipudi, B. Girard, M. Houser, “Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods,” J. Compos. Mater., vol. 52, no. 23, pp. 3173–3181, 2018, doi: https://doi.org/10.1177/0021998318762297
  5. J. I. Lipton, M. Cutler, F. Nigl, D. Cohen, H. Lipson, “Additive manufacturing for the food industry,” Trends Food Sci. Technol., vol. 43, no. 1, pp. 114–123, May 2015, doi: https://doi.org/10.1016/j.tifs.2015.02.004
  6. M. Valente, A. Sibai, and M. Sambucci, “Extrusion-Based Additive Manufacturing of Concrete Products: Revolutionizing and Remodeling the Construction Industry,” J. Compos. Sci., vol. 3, no. 3, p. 88, Sep. 2019, doi: https://doi.org/10.3390/jcs3030088
  7. L. A. Vergara, H. A. Colorado, “Additive manufacturing of Portland cement pastes with additions of kaolin, superplastificant and calcium carbonate,” Constr. Build. Mater., vol. 248, p. 118669, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.118669
  8. T. S. Preview, “International Standard ISO / ASTM Additive manufacturing — General principles — Terminology iTeh STANDARD PREVIEW,” vol. 5, 2015, [Online]. Available: https://standards.iteh.ai/catalog/standards/sist/d9adc3ce-ca51-4c21-b508-00fbbe01687d/iso-astm-52900-2015
  9. PWC, 2021, [Online]. Available: http://www.pwc.com/us/en/industrialproducts/assets/3d-printing-next_manufacturing-chartpack-pwc.pdf
  10. L. Cavallo, A. Marcianò, M. Cicciù, G. Oteri, “3D Printing beyond Dentistry during COVID 19 Epidemic: A Technical Note for Producing Connectors to Breathing Devices,” Prosthesis, vol. 2, no. 2, pp. 46–52, Apr. 2020.
  11. F. P. W. Melchels, J. Feijen, D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials, vol. 31, no. 24, pp. 6121–6130, Aug. 2010, doi: https://doi.org/10.1016/j.biomaterials.2010.04.050
  12. F. Ganovelli, M. Corsini, S. Pattanaik, M. Di Benedetto, Introduction to Computer Graphics. Chapman and Hall/CRC, 2014, doi: https://doi.org/10.1201/b15978
  13. R. Attfield, “Sustainability, Global Warming, Population Policies and Liberal Democracy,” in Sustaining Liberal Democracy, London: Palgrave Macmillan UK, 2001, pp. 149–160, doi: https://doi.org/10.1057/9781403900791_9
  14. M. Baumers, C. Tuck, D. L. Bourell, R. Sreenivasan, R. Hague, “Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 225, no. 12, pp. 2228–2239, Dec. 2011, doi: https://doi.org/10.1177/0954405411406044
  15. H. A. Colorado, E. I. G. Velásquez, and S. N. Monteiro, “Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 8221–8234, Jul. 2020, doi: https://doi.org/10.1016/j.jmrt.2020.04.062
  16. H. Gu et al., “Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal,” RSC Adv., vol. 2, no. 29, p. 11007, 2012, doi: https://doi.org/10.1039/c2ra21991c
  17. J. Zhu et al., “Magnetic nanocomposites for environmental remediation,” Adv. Powder Technol., vol. 24, no. 2, pp. 459–467, Mar. 2013, doi: https://doi.org/10.1016/j.apt.2012.10.012
  18. J. A. Vara, P. N. Dave, and V. R. Ram, “Nanomaterials as modifier for composite solid propellants,” Nano-Structures & Nano-Objects, vol. 20, p. 100372, Oct. 2019, doi: https://doi.org/10.1016/j.nanoso.2019.100372
  19. S. S. Rao, “Hierarchical nanospheres of NiCoS/NF for high-performance supercapacitors,” Nano-Structures & Nano-Objects, vol. 19, p. 100366, Jul. 2019, doi: https://doi.org/10.1016/j.nanoso.2019.100366
  20. R. D. Farahani, M. Dubé, D. Therriault, “Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications,” Adv. Mater., vol. 28, no. 28, pp. 5794–5821, Jul. 2016, doi: https://doi.org/10.1002/adma.201506215
  21. Y. Zhang et al., “Additive manufacturing of carbon nanotube-photopolymer composite radar absorbing materials,” Polym. Compos., vol. 39, no. S2, pp. E671–E676, May 2018, doi: https://doi.org/10.1002/pc.24117
  22. K. Kim et al., “3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials,” ACS Nano, vol. 8, no. 10, pp. 9799–9806, Oct. 2014, doi: https://doi.org/10.1021/nn503268f
  23. A. Morelli, D. Puppi, and F. Chiellini, “Polymers from Renewable Resources,” J. Renew. Mater., vol. 1, no. 2, pp. 83–112, Apr. 2013, doi: https://doi.org/10.7569/JRM.2012.634106
  24. N. Matsuhisa et al., “Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes,” Nat. Mater., vol. 16, no. 8, pp. 834–840, Aug. 2017, doi: https://doi.org/10.1038/nmat4904
  25. P. Rastogi and B. Kandasubramanian, “Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing,” Chem. Eng. J., vol. 366, pp. 264–304, Jun. 2019, doi: https://doi.org/10.1016/j.cej.2019.02.085
  26. P. Mohanty, R. Mahapatra, P. Padhi, C. V. V. Ramana, and D. K. Mishra, “Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review,” Nano-Structures & Nano-Objects, vol. 23, p. 100475, Jul. 2020, doi: https://doi.org/10.1016/j.nanoso.2020.100475
  27. D. Tranfield, D. Denyer, and P. Smart, “Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review,” Br. J. Manag., vol. 14, no. 3, pp. 207–222, 2003, doi: https://doi.org/10.1111/1467-8551.00375
  28. A. Paesano, “Polymeric Additive Manufacturing : Present Status and Future Trends of Materials and Processes,” 2016.
  29. P. H. Lee, H. Chung, S. W. Lee, J. Yoo, and J. Ko, “Review: Dimensional Accuracy in Additive Manufacturing Processes,” in Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing, Jun. 2014. doi: https://doi.org/10.1115/MSEC2014-4037
  30. J. Deckers, J. Vleugels, and J. P. Kruth, “Additive manufacturing of ceramics: A review,” J. Ceram. Sci. Technol., vol. 5, no. 4, pp. 245–260, 2014, doi: https://doi.org/10.4416/JCST2014-00032
  31. P. M. Dickens, “Research Developments in Rapid Prototyping,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 209, no. 4, pp. 261–266, 1995, doi: https://doi.org/10.1243/PIME_PROC_1995_209_082_02
  32. A. S. De León and S. I. Molina, “Influence of the Degree of Cure in the Bulk Properties of Graphite Nanoplatelets Nanocomposites Printed via Stereolithography,” Polymers (Basel), vol. 12, no. 5, p. 1103, May 2020, doi: https://doi.org/10.3390/polym12051103
  33. J. Li, C. Wu, P. K. Chu, and M. Gelinsky, “3D printing of hydrogels: Rational design strategies and emerging biomedical applications,” Mater. Sci. Eng. R Reports, vol. 140, p. 100543, Apr. 2020, doi: https://doi.org/10.1016/j.mser.2020.100543
  34. B. Wang et al., “A physical and chemical double enhancement strategy for 3D printing of cellulose reinforced nanocomposite,” J. Appl. Polym. Sci., vol. 137, no. 39, p. 49164, Oct. 2020, doi: https://doi.org/10.1002/app.49164
  35. J. O. Palaganas, N. B. Palaganas, L. J. I. Ramos, and C. P. C. David, “3D Printing of Covalent Functionalized Graphene Oxide Nanocomposite via Stereolithography,” ACS Appl. Mater. Interfaces, vol. 11, no. 49, pp. 46034–46043, Dec. 2019, doi: https://doi.org/10.1021/acsami.9b12071
  36. D. Mohan, M. S. Sajab, H. Kaco, S. B. Bakarudin, and A. Mohamed Noor, “3D Printing of UV-Curable Polyurethane Incorporated with Surface-Grafted Nanocellulose,” Nanomaterials, vol. 9, no. 12, p. 1726, Dec. 2019, doi: https://doi.org/10.3390/nano9121726
  37. Y. Zuo, Z. Yao, H. Lin, J. Zhou, J. Lu, and J. Ding, “Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption,” Compos. Part B Eng., vol. 179, p. 107533, Dec. 2019, doi: https://doi.org/10.1016/j.compositesb.2019.107533
  38. G. Taormina, C. Sciancalepore, F. Bondioli, and M. Messori, “Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles,” Polymers (Basel), vol. 10, no. 2, p. 212, Feb. 2018, doi: https://doi.org/10.3390/polym10020212
  39. J. Z. Manapat, J. D. Mangadlao, B. D. B. Tiu, G. C. Tritchler, and R. C. Advincula, “High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability,” ACS Appl. Mater. Interfaces, vol. 9, no. 11, pp. 10085–10093, Mar. 2017, doi: https://doi.org/10.1021/acsami.6b16174
  40. N. B. Palaganas et al., “3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography,” ACS Appl. Mater. Interfaces, vol. 9, no. 39, pp. 34314–34324, Oct. 2017, doi: https://doi.org/10.1021/acsami.7b09223
  41. M. A. Geven et al., “Fabrication of patient specific composite orbital floor implants by stereolithography,” Polym. Adv. Technol., vol. 26, no. 12, pp. 1433–1438, Dec. 2015, doi: https://doi.org/10.1002/pat.3589
  42. J. Z. Manapat, Q. Chen, P. Ye, and R. C. Advincula, “3D Printing of Polymer Nanocomposites via Stereolithography,” Macromol. Mater. Eng., vol. 302, no. 9, p. 1600553, Sep. 2017, doi: https://doi.org/10.1002/mame.201600553
  43. X. Feng, Z. Yang, S. Chmely, Q. Wang, S. Wang, and Y. Xie, “Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization,” Carbohydr. Polym., vol. 169, pp. 272–281, Aug. 2017, doi: https://doi.org/10.1016/j.carbpol.2017.04.001
  44. M. Gurr, Y. Thomann, M. Nedelcu, R. Kübler, L. Könczöl, R. Mülhaupt, “Novel acrylic nanocomposites containing in-situ formed calcium phosphate/layered silicate hybrid nanoparticles for photochemical rapid prototyping, rapid tooling and rapid manufacturing processes,” Polymer (Guildf)., vol. 51, no. 22, pp. 5058–5070, Oct. 2010, doi: https://doi.org/10.1016/j.polymer.2010.08.026
  45. S. Mubarak et al., “Enhanced Mechanical and Thermal Properties of Stereolithography 3D Printed Structures by the Effects of Incorporated Controllably Annealed Anatase TiO2 Nanoparticles,” Nanomaterials, vol. 10, no. 1, p. 79, 2020, doi: https://doi.org/10.3390/nano10010079
  46. H. Wu et al., “Recent developments in polymers/polymer nanocomposites for additive manufacturing,” Prog. Mater. Sci., vol. 111, p. 100638, Jun. 2020, doi: https://doi.org/10.1016/j.pmatsci.2020.100638
  47. Z. Feng et al., “Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds,” J. Nanomater., vol. 2019, pp. 1–13, Apr. 2019, doi: https://doi.org/10.1155/2019/9710264
  48. J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, Mar. 2018, doi: https://doi.org/10.1016/j.addma.2017.12.002
  49. C. K. Daniel Küpper, Wilderich Heising, Gero Corman, Meldon Wolfgang and V. Lukic, “Get Ready for Industrialized Additive Manufacturing.” The Boston Consulting Group (BCG), p. 19, 2017. [Online]. Available: https://www.bcg.com/publications/2017/lean-manufacturing-industry-4.0-get-ready-for-industrialized-additive-manufacturing
  50. J. Guinée et al., Handbook on LCA, operational guide to the ISO standards. 2002.
  51. C. Bressot et al., “Sanding and analysis of dust from nano-silica filled composite resins for stereolithography,” Chem. Eng. Res. Des., vol. 156, pp. 23–30, Apr. 2020, doi: https://doi.org/10.1016/j.cherd.2020.01.011
  52. H. A. Balogun, R. Sulaiman, S. S. Marzouk, A. Giwa, and S. W. Hasan, “3D printing and surface imprinting technologies for water treatment: A review,” J. Water Process Eng., vol. 31, p. 100786, Oct. 2019, doi: https://doi.org/10.1016/j.jwpe.2019.100786
  53. A. Zhakeyev, P. Wang, L. Zhang, W. Shu, H. Wang, and J. Xuan, “Additive Manufacturing: Unlocking the Evolution of Energy Materials,” Adv. Sci., vol. 4, no. 10, p. 1700187, Oct. 2017, doi: https://doi.org/10.1002/advs.201700187
  54. M. R. Khosravani and T. Reinicke, “On the environmental impacts of 3D printing technology,” Appl. Mater. Today, vol. 20, p. 100689, Sep. 2020, doi: https://doi.org/10.1016/j.apmt.2020.100689
  55. A. Locker, “Wanhao Duplicator 7 (D7) Plus 3d Printer – Review The Specs,” 2019. https://all3dp.com/1/wanhao-duplicator-7-d7-plus-3d-printer-review/
  56. EnvisionTEC, “EnvisionTEC Perfactory 3 Mini Multi Lens overview.” https://www.aniwaa.com/product/3d-printers/envisiontec-perfactory-3-mini-multi-lens/
  57. Form Labs[Internet].Somerville, USA. Available from: https://archive-media.formlabs.com/upload/Form-1plus-overview-US.pdf
  58. FormLabs, “Formlabs Form 1+ overview.” https://www.aniwaa.com/product/3d-printers/formlabs-form1-2/
  59. A. Locker, “Formlabs Form 2 Review: Great Resin 3D Printer.” https://all3dp.com/formlabs-form-2-review-price-sla-3d-printer/
  60. Anycubic, “Anycubic Photon.” https://www.anycubic.com/products/anycubicphoton-3d-printer.
  61. A. Olivera-Castillo, E. Chica-Arrieta, and H. Colorado-Lopera, “Manufacturing processes, life cycle analysis, and future challenges for wind turbine blades,” Rev. UIS Ing., vol. 21, no. 4, Oct. 2022, doi: https://doi.org/10.18273/revuin.v21n4-2022002