Vol. 23 Núm. 2 (2024): Revista UIS Ingenierías
Artículos

Manufactura aditiva de materiales basados en suelos: estado actual y perspectivas futuras de esta tecnología de construcción amigable con el ambiente

Nathalia Conde-Caicedo
Universidad del Valle
Mónica A. Villaquirán-Caicedo
Universidad del Valle
Ruby Mejía de Gutiérrez
Universidad del Valle

Publicado 2024-06-24

Palabras clave

  • manufactura aditiva,
  • impresión 3D de suelos,
  • materiales basados en tierra,
  • adobe,
  • cob

Cómo citar

Conde-Caicedo , N. ., Villaquirán-Caicedo , M. A. ., & Mejía de Gutiérrez , R. . (2024). Manufactura aditiva de materiales basados en suelos: estado actual y perspectivas futuras de esta tecnología de construcción amigable con el ambiente . Revista UIS Ingenierías, 23(2), 91–110. https://doi.org/10.18273/revuin.v23n2-2024006

Resumen

En los últimos años, se ha generado gran interés en la construcción sostenible, lo que ha llevado a un mayor interés en la impresión 3D o manufactura aditiva. Sin embargo, el uso de esta técnica con materiales convencionales no es suficiente para disminuir el gran impacto ambiental que genera el sector de la construcción. Aunque la mayoría de las investigaciones y avances están centralizadas en la impresión 3D de concreto Portland, esta revisión se ha trabajado orientada hacia la impresión 3D de materiales de construcción basados en suelos y arcillas, los con los cuales se puede proporcionar un enfoque asequible (ya que es un material localmente disponible en muchas regiones del planeta), sostenible ambientalmente, y con bajo costo, lo cual es altamente beneficioso para la construcción de viviendas. Este documento se ha orientado hacia la búsqueda de literatura científica y prototipos que se han elaborado utilizando materiales ancestrales, como son suelos-arcillas-arena-fibras como paja y agua, para elaboración de piezas constructivas tipo muros o adobes impresos en 3D. El objetivo de este documento es cerrar la brecha sobre la utilización de mezclas basadas en suelos, que, aunque parezcan totalmente estudiadas por varios siglos, a la fecha su aplicación en impresión 3D es reducida. Reajustes en propiedades de las mezclas de suelos como la fluidez para el bombeo o extrusión, edificabilidad y buen tiempo de trabajo, son variables que se reportan en este documento. Además, en esta revisión se describen las mezclas que han sido desarrolladas para impresión 3D a partir de suelos y arcillas, y las principales características que se han encontrado. Finalmente, se presentan los desafíos que aún persisten para que las mezclas puedan aplicarse a una escala industrial masiva.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Deloitte, “Industry 4.0 Challenges and solutions for the digital transformation and use of exponential technologies,” 2015.
  2. M. Gomaa, S. Schade, D. W. Bao, Y. M. Xie, “Automation in rammed earth construction for industry 4.0: Precedent work, current progress and future prospect,” J Clean Prod, vol. 398, p. 136569, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.136569
  3. B. Xiao, C. Chen, X. Yin, “Recent advancements of robotics in construction,” Autom Constr, vol. 144, p. 104591, 2022, doi: https://doi.org/10.1016/j.autcon.2022.104591
  4. ASTM, “Standard Terminology for Additive Manufacturing – General Principles – Terminology,” ISO/ASTM 52900, 2015.
  5. R. Robayo-Salazar, R. Mejía de Gutiérrez, M. A. Villaquirán-Caicedo, S. Delvasto Arjona, “3D printing with cementitious materials: Challenges and opportunities for the construction sector,” Autom Constr, vol. 146, p. 104693, 2023, doi: https://doi.org/10.1016/j.autcon.2022.104693
  6. G. De Schutter, K. Lesage, V. Mechtcherine, V. N. Nerella, G. Habert, and I. Agusti-Juan, “Vision of 3D printing with concrete — Technical, economic and environmental potentials,” Cem Concr Res, vol. 112, pp. 25–36, 2018, doi: https://doi.org/10.1016/j.cemconres.2018.06.001
  7. F. Bos, R. Wolfs, Z. Ahmed, T. Salet, “Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing,” Virtual Phys Prototyp, vol. 11, no. 3, pp. 209–225, 2016, doi: https://doi.org/10.1080/17452759.2016.1209867
  8. K. Yu, W. McGee, T. Y. Ng, H. Zhu, V. C. Li, “3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties,” Cem Concr Res, vol. 143, p. 106388, 2021, doi: https://doi.org/10.1016/j.cemconres.2021.106388
  9. R. A. Buswell, W. R. Leal de Silva, S. Z. Jones, J. Dirrenberger, “3D printing using concrete extrusion: A roadmap for research,” Cem Concr Res, vol. 112, pp. 37–49, Oct. 2018, doi: https://doi.org/10.1016/j.cemconres.2018.05.006
  10. M. Batikha, R. Jotangia, M. Y. Baaj, I. Mousleh, “3D concrete printing for sustainable and economical construction: A comparative study,” Autom Constr, vol. 134, p. 104087, 2022, doi: https://doi.org/10.1016/j.autcon.2021.104087
  11. G. Ma, L. Wang, Y. Ju, “State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction,” Sci China Technol Sci, vol. 61, no. 4, pp. 475–495, 2018, doi: https://doi.org/10.1007/s11431-016-9077-7
  12. G. W. Ma, L. Wang, Y. Ju, “State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction,” Sci China Technol Sci, vol. 61, no. 4, pp. 475–495, 2018, doi: https://doi.org/10.1007/s11431-016-9077-7
  13. G. Ma, L. Wang, “A critical review of preparation design and workability measurement of concrete material for largescale 3D printing,” Frontiers of Structural and Civil Engineering, vol. 12, no. 3, pp. 382–400, 2018, doi: https://doi.org/10.1007/s11709-017-0430-x
  14. IEA, “Buildings – Sectorial overview.” [Online]. Available: https://www.iea.org/reports/buildings
  15. CEPAL, “Daño y pérdida de biodiversidad | Comisión Económica para América Latina y el Caribe.” [Online]. Available: https://www.cepal.org/es/temas/biodiversidad/perdida-biodiversidad
  16. Comisión Europea, “Climate & energy package | Climate Action,” 2020. [Online]. Available: https://ec.europa.eu/clima/policies/strategies/2020_en
  17. H. Alhumayani, M. Gomaa, V. Soebarto, W. Jabi, “Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete,” J Clean Prod, vol. 270, p. 122463, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122463
  18. T. T. Le et al., “Hardened properties of high-performance printing concrete,” Cem Concr Res, vol. 42, no. 3, pp. 558–566, 2012, doi: https://doi.org/10.1016/j.cemconres.2011.12.003
  19. A. Khalil, X. Wang, K. Celik, “3D printable magnesium oxide concrete: towards sustainable modern architecture,” Addit Manuf, vol. 33, p. 101145, 2020, doi: https://doi.org/10.1016/j.addma.2020.101145
  20. Y. Peng, C. Unluer, “Development of alternative cementitious binders for 3D printing applications: A critical review of progress, advantages and challenges,” Compos B Eng, vol. 252, p. 110492, 2023, doi: https://doi.org/10.1016/j.compositesb.2022.110492
  21. S. Rückrich, G. Agranati, Y. J. Grobman, “Earth-based additive manufacturing: A field-oriented methodology for evaluating material printability,” Archit Sci Rev, vol. 66, no. 2, pp. 133–143, 2023, doi: https://doi.org/10.1080/00038628.2022.2154739
  22. T. Akemah, L. Ben-Alon, “Developing 3D-Printed Natural Fiber-Based Mixtures,” Bio-Based Building Materials, pp. 555–572, 2023, doi: https://doi.org/10.1007/978-3-031-33465-8_42
  23. BIG Bjarke Ingels Group, “Cien casas impresas en 3D (Austin, Texas),” 2021. [Online]. Available: https://arquitecturaviva.com/obras/100-casas-impresas-en-3d-en-austin
  24. New Story, “The world’s first community of 3D printed homes New Story,” [Online]. Available: https://newstoryhomes.org/3d-community/
  25. Automate Construction, “First 2 Story REAL CONCRETE Printed Building in North America - YouTube.” [Online]. Available: https://www.youtube.com/watch?v=F_EJU43igP0
  26. Euronews, “Only 140 hours needed to put together ‘Europe’s largest 3D-printed building’ | Euronews.” [Online]. Available: https://www.euronews.com/next/2023/05/11/only-140-hours-needed-to-put-together-europes-largest-3d-printed-building
  27. O. Holland, “Comienza la construcción del vecindario impreso en 3D más grande del mundo en Texas,” CNN español. [Online]. Available: https://cnnespanol.cnn.com/2021/11/04/construccion-casas-impresion-3d-texas-trax/
  28. D. Domínguez, “Así son las viviendas impresas en 3D para familias con pocos recursos,” Economía Digital. Online]. Available: https://www.economiadigital.es/tecnologia/asi-son-las-viviendas-impresas-en-3d-para-familias-con-pocos-recursos_20018729_102.html
  29. Semana, “Empresas en Colombia le apuestan a la construcción de casas con impresoras 3D,” Portafolio. [Online]. Available: https://www.portafolio.co/mis-finanzas/vivienda/primer-prototipo-de-vivienda-construida-con-una-impresora-3d-510906
  30. GCCA, “Getting the Numbers Right - GCCA in numbers.” [Online]. Available: https://gccassociation.org/sustainability-innovation/gnr-gcca-in-numbers/
  31. IEA, “Industry - Sectoral overview - International Energy Agent.” [Online]. Available: https://www.iea.org/reports/industry
  32. A. Gangotra, K. Lebling, J. Feldmann, K. Kennedy, “What does ‘green’ procurement mean? Initiatives and standards for cement and steel.” [Online]. Available: https://www.wri.org/insights/green-procurement-initiatives
  33. EPA, “Sources of Greenhouse Gas Emissions - United States Environmental Protection Agency.” [Online]. Available: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#cement
  34. M. Gomaa, J. Carfrae, S. Goodhew, W. Jabi, A. Veliz Reyes, “Thermal performance exploration of 3D printed cob,” Archit Sci Rev, vol. 62, no. 3, pp. 230–237, 2019, doi: https://doi.org/10.1080/00038628.2019.1606776
  35. G. Silva, L. Quispe, S. Kim, J. Nakamatsu, R. Aguilar, “Development of a stabilized natural fiber-reinforced earth composite for construction applications using 3D printing,” IOP Conf Ser Mater Sci Eng, vol. 706, no. 1, p. 012015, 2019, doi: https://doi.org/10.1088/1757-899X/706/1/012015
  36. J. E. Gama-Castro et al., “Arquitectura de tierra: el adobe como material de construcción en la época prehispánica,” Boletín de la Sociedad Geológica Mexicana, vol.64, no.2, 2012.
  37. Zackary Eugene Bryson, Wil V Srubar, Shiho Kawashima, and Lola Ben-Alon, “Towards 3d printed earth- and bio-based insulation materials: a case study on light straw clay,” International Conference on Non-conventional Materials and Technologies, 2022, doi: https://doi.org/10.5281/zenodo.6611394
  38. H. Houben, H. Guillaud, “de l’article/du chapitre earth construction.,” A comprehensive guide. distributeur Craterre-Eag, 1994.
  39. L. Keefe, Earth building: methods and materials, repair and conservation. 2012.
  40. J. Liu, V. Nguyen-Van, B. Panda, K. Fox, A. du Plessis, P. Tran, “Additive Manufacturing of Sustainable Construction Materials and Form-finding Structures: A Review on Recent Progresses,” 3D Print Addit Manuf, vol. 9, no. 1, pp. 12–34, 2022, doi: https://doi.org/10.1089/3dp.2020.0331
  41. L. Watson, K. McCabe, “La técnica constructiva del cob. Pasado, presente y futuro,” Informes de la Construcción, vol. 63, no. 523, pp. 59–70, 2011, doi: https://doi.org/10.3989/ic.10.018
  42. A. Alqenaee, A. Memari, “Experimental study of 3D printable cob mixtures,” Constr Build Mater, vol. 324, p. 126574, Mar. 2022, doi: https://doi.org/10.1016/j.conbuildmat.2022.126574
  43. E. Hamard, B. Cazacliu, A. Razakamanantsoa, J. C. Morel, “Cob, a vernacular earth construction process in the context of modern sustainable building,” Build Environ, vol. 106, pp. 103–119, 2016, doi: https://doi.org/10.1016/j.buildenv.2016.06.009
  44. K. González-Velandia, R. Sánchez-Bernal, D. Pita-Castañeda, L. Pérez-Navar, “Caracterización de las propiedades mecánicas de un ladrillo no estructural de tierra como soporte de material vegetal en muros verdes,” Ingeniería. Investigación y Tecnología, 2019,
  45. M. Gomaa, W. Jabi, V. Soebarto, Y. M. Xie, “Digital manufacturing for earth construction: A critical review,” J Clean Prod, vol. 338, p. 130630, 2022, doi: https://doi.org/10.1016/j.jclepro.2022.130630
  46. E. Quagliarini, A. Stazi, E. Pasqualini, E. Fratalocchi, “Cob Construction in Italy: Some Lessons from the Past,” Sustainability, vol. 2, no. 10, pp. 3291–3308, 2010, doi: https://doi.org/10.3390/su2103291
  47. A. Weismann, K. Bryce, Building with Cob: a step by step guide. 2006.
  48. M. Gomaa, J. Vaculik, V. Soebarto, M. Griffith, W. Jabi, “Feasibility of 3DP cob walls under compression loads in low-rise construction,” Constr Build Mater, vol. 301, p. 124079, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124079
  49. Y. Jacquet, A. Perrot, “Evolutionary Approach Based on Thermoplastic Bio-Based Building Material for 3D Printing Applications: An Insight into a Mix of Clay and Wax,” Bio-Based Building Materials, 2023, pp. 271–279. doi: https://doi.org/10.1007/978-3-031-33465-8_21
  50. G. Silva, L. Quispe, S. Kim, J. Nakamatsu, R. Aguilar, “Development of a stabilized natural fiber-reinforced earth composite for construction applications using 3D printing,” IOP Conf Ser Mater Sci Eng, vol. 706, no. 1, p. 012015, 2019, doi: https://doi.org/10.1088/1757-899X/706/1/012015
  51. Y. Chen, S. He, Y. Zhang, Z. Wan, O. Çopuroğlu, E. Schlangen, “3D printing of calcined clay-limestone-based cementitious materials,” Cem Concr Res, vol. 149, p. 106553, 2021, doi: https://doi.org/10.1016/J.CEMCONRES.2021.106553
  52. O. B. Carcassi, Y. Maierdan, T. Akemah, S. Kawashima, L. Ben-Alon, “Maximizing fiber content in 3D-printed earth materials: Printability, mechanical, thermal and environmental assessments,” Constr Build Mater, vol. 425, p. 135891, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.135891
  53. A. Veliz Reyes, W. Jabi, M. Gomaa, A. Chatzivasileiadi, L. Ahmad, N. M. Wardhana, “Negotiated matter: a robotic exploration of craft-driven innovation,” Archit Sci Rev, vol. 62, no. 5, pp. 398 – 408, 2019, doi: https://doi.org/10.1080/00038628.2019.1651688
  54. A. Veliz Reyes, M. Gomaa, W. Jabi, A. Chatzivasileiadi, N. M. Wardhana, “Computing Craft: Early Development of a Robotically- Supported Cob 3D Printing System,” 2018.
  55. M. Gomaa, W. Jabi, A. Veliz Reyes, V. Soebarto, “3D printing system for earth-based construction: Case study of cob,” Autom Constr, vol. 124, p. 103577, 2021, doi: https://doi.org/10.1016/j.autcon.2021.103577
  56. P. Sahoo, S. Gupta, “3D Printable Earth-Based Alkali-Activated Materials: Role of Mix Design and Clay-Rich Soil,” Bio-Based Building Materials, 2023, pp. 333–352, doi: https://doi.org/10.1007/978-3-031-33465-8_27
  57. E. Ordoñez, S. Neves Monteiro, H. A. Colorado, “Valorization of a hazardous waste with 3D-printing: Combination of kaolin clay and electric arc furnace dust from the steel making industry,” Mater Des, vol. 217, p. 110617, 2022, doi: https://doi.org/10.1016/j.matdes.2022.110617
  58. P. R. K. Soda, A. Dwivedi, S. C M, S. Gupta, “Development of 3D printable stabilized earth-based construction materials using excavated soil: Evaluation of fresh and hardened properties,” Science of The Total Environment, vol. 924, p. 171654, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.171654
  59. Y. Maierdan et al., “Rheology and 3D printing of alginate bio-stabilized earth concrete,” Cem Concr Res, vol. 175, p. 107380, 2024, doi: https://doi.org/10.1016/j.cemconres.2023.107380
  60. S. Mallakpour, E. Azadi, C. M. Hussain, “State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications,” Adv Colloid Interface Sci, vol. 293, p. 102436, 2021, doi: https://doi.org/10.1016/J.CIS.2021.102436
  61. A. Perrot, D. Rangeard, E. Courteille, “3D printing of earth-based materials: Processing aspects,” Constr Build Mater, vol. 172, pp. 670–676, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.04.017
  62. G. Genc, R. K. Demircan, F. Beyhan, G. Kaplan, “Assessment of the sustainability and producibility of adobe constructions reinforced with Ca-based binders: Environmental life cycle analysis (LCA) and 3D printability,” Science of The Total Environment, vol. 906, p. 167695, 2024, doi: https://doi.org/10.1016/j.scitotenv.2023.167695
  63. CyBe, “3D Studio 2030 | CyBe Construction.” [Online]. Available: https://cybe.eu/cases/3d-studio-2030/
  64. 3DWASP, “WASP unveils the new concept store for Dior.” Available: https://www.3dwasp.com/en/
  65. D. EL-Mahdy, M. Ali, “Assessing the solar radiation performance of self-shaded 3D-printed clay-based façades,” Architectural Engineering and Design Management, vol. 20, no. 2, pp. 249–268, 2024, doi: https://doi.org/10.1080/17452007.2023.2285325
  66. O. Kontovourkis, G. Tryfonos, “Robotic 3D clay printing of prefabricated non-conventional wall components based on a parametric-integrated design,” Autom Constr, vol. 110, p. 103005, 2020, doi: https://doi.org/10.1016/j.autcon.2019.103005
  67. K. Manikandan, X. Jiang, A. A. Singh, B. Li, H. Qin, “Effects of Nozzle Geometries on 3D Printing of Clay Constructs: Quantifying Contour Deviation and Mechanical Properties,” Procedia Manuf, vol. 48, pp. 678–683, 2020, doi: https://doi.org/10.1016/j.promfg.2020.05.160
  68. E. Ordoñez, J. M. Gallego, H. A. Colorado, “3D printing via the direct ink writing technique of ceramic pastes from typical formulations used in traditional ceramics industry,” Appl Clay Sci, vol. 182, p. 105285, Dec. 2019, doi: https://doi.org/10.1016/J.CLAY.2019.105285
  69. C. F. Revelo, H. A. Colorado, “3D printing of kaolinite clay ceramics using the Direct Ink Writing (DIW) technique,” Ceram Int, vol. 44, no. 5, pp. 5673–5682, Apr. 2018, doi: https://doi.org/10.1016/j.ceramint.2017.12.219
  70. K. Wi, V. Suresh, K. Wang, B. Li, H. Qin, “Quantifying quality of 3D printed clay objects using a 3D structured light scanning system,” Addit Manuf, vol. 32, p. 100987, 2020, doi: https://doi.org/10.1016/j.addma.2019.100987
  71. 3DWASP, “Stampa 3D in argilla a Marrakech - Wasproject - WASP.” [Online]. Available: https://www.3dwasp.com/marrakech-clay-3d-printing/
  72. 3DWASP, “3D printed houses for a renewed balance between environment and technology.” [Online]. Available: https://www.3dwasp.com/en/3d-printed-houses-for-a-renewed-balance-between-environment-and-technology/
  73. 3DWASP, “The first 3D printed House with earth | Gaia | 3D Printers | WASP.” [Online]. Available: https://www.3dwasp.com/en/3d-printed-house-gaia/
  74. 3DWASP, “3D printed house TECLA - Eco-housing | 3D Printers | WASP.” [Online]. Available: https://www.3dwasp.com/en/3d-printed-house-tecla/
  75. 3DWASP, “Crowdfunding for The House of Dust | Art and Design | WASP.” [Online]. Available: https://www.3dwasp.com/en/crowdfunding-for-the-house-of-dust/
  76. IAAC, “Plyos Project-Report,” 2015.
  77. IAAC, “TerraPerforma - Institute for Advanced Architecture of Catalonia.” [Online]. Available: https://iaac.net/project/terraperforma/
  78. IAAC, “IAAC Demonstrates On Site Robotics 3D Printing Construction Method in Barcelona - 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.” [Online]. Available: https://3dprint.com/182052/iaac-3d-print-on-site-construction/
  79. IAAC, “Digital Adobe - IAAC.” [Online]. Available: https://iaac.net/project/digital-adobe/
  80. IAAC & WASP, “3D printed earth wall with embedded staircase | 3D Printers | WASP.” [Online]. Available: https://www.3dwasp.com/en/3d-printed-wall/
  81. IAAC & WASP, “TOVA è il primo edificio in terra stampato in 3D in Spagna.” [Online]. Available: https://www.3dwasp.com/tova-edificio-stampato-3d-con-crane-wasp/
  82. 3D Potter & Emerging Objects, “Mud Frontiers: Part II | Emerging Objects.” [Online]. Available: https://emergingobjects.com/project/mud-frontiers-part-ii/
  83. 3D Potter & Emerging Objects, “Casa Covida | Emerging Objects.” [Online]. Available: https://emergingobjects.com/project/casa-covida/
  84. J. Rodríguez, J. Pinzón, “Estado del arte de la autoconstrucción sostenible en Colombia,” trabajo de grado, Universidad Distrital Francisco José de Caldas, 2016. [Online]. Available: https://repository.udistrital.edu.co/handle/11349/3457