Vol. 23 Núm. 1 (2024): Revista UIS Ingenierías
Artículos

Materiales, métodos y normativa para refuerzos de material compuesto en reparación de tuberías y equipos a presión

Juan Leon Becerra
Universidad de Investigación y Desarrollo
Cristian Hernandez-Salazar
Aplika Control Corrosión SAS
Fernando Corzo-Álvarez
Corporación para la investigación en corrosión CIC

Publicado 2024-03-13

Palabras clave

  • materiales compuestos,
  • reparación,
  • rehabilitación,
  • tuberías,
  • elementos finitos

Cómo citar

Leon Becerra, J., Hernandez-Salazar, C., & Corzo-Álvarez , F. . (2024). Materiales, métodos y normativa para refuerzos de material compuesto en reparación de tuberías y equipos a presión. Revista UIS Ingenierías, 23(1), 65–80. https://doi.org/10.18273/revuin.v23n1-2024006

Resumen

Debido a su alta resistencia a la corrosión, la fatiga y el bajo peso específico, los materiales compuestos se han desarrollado como una buena alternativa para reemplazar los materiales tradicionales. Se utilizan en el transporte de fluidos, en la rehabilitación y reparación de sistemas a presión en operación y son relativamente fáciles de usar en el sector industrial. Este trabajo muestra el estado del arte en los sistemas de reparación que utilizan reforzamiento de materiales compuestos. Primero, clasifica los sistemas, mostrando los sistemas que están disponibles en el mercado y los compara en términos de sus propiedades mecánicas y procesos de aplicación. En un segundo momento, se presentan y comparan las normas de diseño ASME PCC2 e ISO 24817. Finalmente, se muestran las técnicas experimentales y de simulación utilizadas para su estudio. El trabajo concluye mostrando las posibilidades futuras y desafíos que enfrentan los sistemas de reparación de compuestos en su adopción.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. K. Osouli-Bostanabad, A. Tutunchi, M. Eskandarzade, “The influence of pre-bond surface treatment over the reliability of steel epoxy/glass composites bonded joints,” Int. J. Adhes. Adhes., vol. 75, pp. 145–154, Jun. 2017, doi: https://doi.org/10.1016/j.ijadhadh.2017.03.006
  2. ASME, “ASME PCC-2: Repair of Pressure Equipment and Piping,” 2018.
  3. I. Lambrescu, V. A. Chebanenko, D. V. Gusakov, and A. V. Morgunova, “Assessment of the Reinforcement Capacity of Composite Repair Systems for Pipelines with Interacting Defects,” in Engineering Materials, 2018, doi: https://doi.org/10.1007/978-3-319-56579-8_20
  4. W. Sum and K. Leong, “Numerical study of annular flaws/defects affecting the integrity of grouted composite sleeve repairs on pipelines,” J. Reinf. Plast. Compos., vol. 33, no. 6, pp. 556–565, 2014, doi: https://doi.org/10.1177/0731684413503721
  5. A. Oulad Brahim, I. Belaidi, S. Khatir, C. Le Thanh, S. Mirjalili, and M. Abdel Wahab, “Strength prediction of a steel pipe having a hemi-ellipsoidal corrosion defect repaired by GFRP composite patch using artificial neural network,” Compos. Struct., vol. 304, p. 116299, Jan. 2023, doi: https://doi.org/10.1016/j.compstruct.2022.116299
  6. N. Saeed, H. Baji, H. Ronagh, “Reliability of corroded thin walled pipes repaired with composite overwrap,” Thin-Walled Struct., vol. 85, pp. 201–206, Dec. 2014, doi: https://doi.org/10.1016/j.tws.2014.08.020
  7. H. S. da Costa Mattos, J. M. L. Reis, L. M. Paim, M. L. da Silva, R. Lopes Junior, V. A. Perrut, “Failure analysis of corroded pipelines reinforced with composite repair systems,” Eng. Fail. Anal., vol. 59, pp. 223–236, Jan. 2016, doi: https://doi.org/10.1016/j.engfailanal.2015.10.007
  8. I. Alsyouf, “The role of maintenance in improving companies’ productivity and profitability,” Int. J. Prod. Econ., vol. 105, no. 1, pp. 70–78, Jan. 2007, doi: https://doi.org/10.1016/j.ijpe.2004.06.057
  9. O. A. González Estrada, A. D. Pertuz Comas, “Estudio de la fatiga en láminas de tubería compuesta de matriz epóxica con fibra de vidrio para cargas de tracción,” Sci. Tech., no. 4, pp. 479–488, 2018, doi: https://doi.org/10.22517/23447214.18531
  10. C. Alexander, “Advanced Techniques for Establishing Long-Term Performance of Composite Repair Systems,” International Pipeline Conference, 2014, doi: https://doi.org/10.1115/IPC2014-33405
  11. C. Alexander, J. Bedoya, “Repair of Dents Subjected to Cyclic Pressure Service Using Composite Materials,” in 2010 8th International Pipeline Conference, Volume 1, 2010, vol. 1, pp. 781–789.
  12. J. M. Duell, J. M. Wilson, M. R. Kessler, “Analysis of a carbon composite overwrap pipeline repair system,” Int. J. Press. Vessel. Pip., vol. 85, no. 11, pp. 782–788, Nov. 2008, doi: https://doi.org/10.1016/j.ijpvp.2008.08.001
  13. E. Mahdi, E. Eltai, “Development of cost-effective composite repair system for oil/gas pipelines,” Compos. Struct., vol. 202, pp. 802–806, Oct. 2018, doi: https://doi.org/10.1016/j.compstruct.2018.04.025
  14. H. S. da Costa-Mattos, J. M. L. Reis, R. F. Sampaio, V. A. Perrut, “An alternative methodology to repair localized corrosion damage in metallic pipelines with epoxy resins,” Mater. Des., vol. 30, no. 9, pp. 3581–3591, Oct. 2009, doi: https://doi.org/10.1016/j.matdes.2009.02.026
  15. P. C. Porter and A. J. Patrick, “Using Composite wrap crack arrestors saves money on pipeline conversion,” Pipeline Gas J., vol. 229, no. 10, pp. 65–67, Oct. 2002.
  16. J. Bai, Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Woodhead Publishing Limited, 2013.
  17. Y. A. Al-Salloum, T. H. Almusallam, “Rehabilitation of the Infrastructure Using Composite Materials: Overview and Applications,” J. King Saud Univ. - Eng. Sci., vol. 16, no. 1, pp. 1–20, 2003, doi: https://doi.org/10.1016/S1018-3639(18)30777-3
  18. T. Rehberg, M. Schad, “Non-metallic composite repair systems for pipes and pipelines”, GWF, Gas - Erdgas, vol. 152, no. 4, pp. 232–237, 2011.
  19. F. A. Hoffstadt, “Cured-in-place composite pipe structures in infrastructure rehabilitation,” Int. SAMPE Symp. Exhib., vol. 45, 2000.
  20. M. Shamsuddoha, M. M. Islam, T. Aravinthan, A. Manalo, and K. Lau, “Characterisation of mechanical and thermal properties of epoxy grouts for composite repair of steel pipelines,” Mater. Des., vol. 52, pp. 315–327, Dec. 2013, doi: https://doi.org/10.1016/j.matdes.2013.05.068
  21. M. Mohamadi and M. Heshmati, “Failure analysis of glass-reinforced polyester mortar pipes with different cores subjected to combined loading,” J. Sandw. Struct. Mater., vol. 21, no. 8, pp. 2616–2653, Nov. 2019, doi: https://doi.org/10.1177/1099636217720214
  22. R. J. Jackson, I. D. Moore, and A. S. Genikomsou, “A linear elastic design model for sprayed liners in damaged reinforced concrete pipes,” Tunn. Undergr. Sp. Technol., vol. 132, p. 104901, 2023, doi: https://doi.org/10.1016/j.tust.2022.104901
  23. K. S. Lim, S. N. A. Azraai, N. M. Noor, and N. Yahaya, “An Overview of Corroded Pipe Repair Techniques Using Composite Materials,” Int. J. Mater. Metall. Eng., vol. 10, no. 1, pp. 19–25, 2016.
  24. Li, Tsai, Yang, “A Novel Strengthening Method for Damaged Pipeline under High Temperature Using Inorganic Insulation Material and Carbon Fiber Reinforced Plastic Composite Material,” Materials (Basel)., vol. 12, no. 21, p. 3484, Oct. 2019, doi: https://doi.org/10.3390/ma12213484
  25. J. Leon-Becerra, O. A. González-Estrada, and H. Sánchez-Acevedo, “Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study,” Polymers (Basel)., vol. 14, no. 17, p. 3546, Aug. 2022, doi: https://doi.org/10.3390/polym14173546
  26. V. M. Karbhari, Rehabilitation of pipelines using Fiber-reinforced polymer (FRP) composites. 2015.
  27. ISO, “Petroleum, petrochemical and natural gas industries — Composite repairs for pipework — Qualification and design, installation, testing and inspection,” 2018.
  28. J. Santon, “Regulation changes create opportunities for pipeline manufacturers,” Materials Performance, vol. 38 no. 9, pp. 27-29, 1999.
  29. H. S. da Costa Mattos, J. M. L. Reis, F. C. Amorim, J. F. S. Brandao, L. D. M. Lana, V. A. Perrut, “Long-term field performance of a composite pipe repair under constant hydrostatic pressure,” Eng. Fail. Anal., vol. 130, p. 105765, Dec. 2021, doi: https://doi.org/10.1016/j.engfailanal.2021.105765
  30. R. Frassine, “Long-term performance of a polymer composite repair system for gas pipelines,” Adv. Polym. Technol., vol. 16, no. 1, pp. 33–43, 1997, doi: https://doi.org/10.1002/(SICI)1098-2329(199721)16:1<33::AID-ADV4>3.0.CO;2-K
  31. S. Kulkarni and C. Alexander, “An Operator’s Perspective in Evaluating Composite Repairs,” in 2010 8th International Pipeline Conference, Volume 1, 2010, vol. 1, pp. 945–957.
  32. V. S. Parameswaran, T. S. Krishnamoorthy, K. Balasubramanian, “Current research and applications of fiber reinforced concrete composites in India,” Transp. Res. Rec., no. 1226, pp. 1–6, 1989.
  33. R. A. Esmaeel, M. A. Khan, and F. Taheri, “Assessment of the Environmental Effects on the Performance of FRP Repaired Steel Pipes Subjected to Internal Pressure,” J. Press. Vessel Technol., vol. 134, no. 4, Aug. 2012, doi: https://doi.org/10.1115/1.4005944
  34. P. S. C. Vieira, G. A. S. da Silva, B. J. Lopes, J. R. M. D’Almeida, A. H. da Silva, and D. C. T. Cardoso, “Hygrothermal aging of steel/FRP pipe repair systems: A literature review,” Int. J. Press. Vessel. Pip., vol. 201, p. 104881, 2023, doi: https://doi.org/10.1016/j.ijpvp.2022.104881
  35. Anon, “Two new web applications help guide composite repair decision-making,” Pipeline Gas J., vol. 238, no. 6, pp. 26–28, Jun. 2011.
  36. O. Okolie, J. Latto, N. Faisal, H. Jamieson, A. Mukherji, J. Njuguna, “Manufacturing Defects in Thermoplastic Composite Pipes and Their Effect on the in-situ Performance of Thermoplastic Composite Pipes in Oil and Gas Applications,” Appl. Compos. Mater., vol. 30, no. 1, pp. 231–306, Feb. 2023, doi: https://doi.org/10.1007/s10443-022-10066-9
  37. CSNRI-SGX, “SynthoGlass ® XT,” pp. 1–2, 2021.
  38. CSNRI-SGX, “ThermoWrap ®,” 2021.
  39. W. R. True, “Composite wrap approved for U.S. gas-pipeline repairs,” Oil Gas J., vol. 93, no. 41, 1995.
  40. Y. A. Al-Salloum, T. H. Almusallam, “Rehabilitation of the Infrastructure Using Composite Materials: Overview and Applications,” J. King Saud Univ. - Eng. Sci., vol. 16, no. 1, pp. 1–20, 2003, doi: https://doi.org/10.1016/S1018-3639(18)30777-3
  41. W. S. Chin, D. G. Lee, “Development of the trenchless rehabilitation process for underground pipes based on RTM,” Compos. Struct., vol. 68, no. 3, pp. 267–283, May 2005, doi: https://doi.org/10.1016/j.compstruct.2004.03.019
  42. A. Moreton, “Performance of Segmental and Posttensioned Bridges in Europe,” J. Bridg. Eng., vol. 6, no. 6, pp. 543–555, Dec. 2001, doi: https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(543)
  43. D. C. Lee, V. M. Karbhari, “Rehabilitation of Large Diameter Prestressed Cylinder Concrete Pipe (PCCP) with FRP Composites — Experimental Investigation,” Adv. Struct. Eng., vol. 8, no. 1, pp. 31–44, Jan. 2005, doi: https://doi.org/10.1260/1369433053749634
  44. X. Liu, A. Nanni, P. F. Silva, “Rehabilitation of Compression Steel Members Using FRP Pipes Filled with Non-Expansive and Expansive Light-Weight Concrete,” Adv. Struct. Eng., vol. 8, no. 2, pp. 129–142, Apr. 2005, doi: https://doi.org/10.1260/1369433054038029
  45. S. Dong, D. Wang, E. Hui, C. Gao, H. Zhang, and Y. Tan, “An Overview of the Application of Fiber-Reinforced Cementitious Composites in Spray Repair of Drainage Pipes,” Buildings, vol. 13, no. 5, p. 1119, Apr. 2023, doi: https://doi.org/10.3390/buildings13051119
  46. M. F. Köpple, S. Lauterbach, W. Wagner, “Composite repair of through-wall defects in pipework – Analytical and numerical models with respect to ISO/TS 24817,” Compos. Struct., vol. 95, pp. 173–178, 2013, doi: https://doi.org/10.1016/j.compstruct.2012.06.023
  47. J. I. Press, “Акцuональносmь u сmаmальносmь; uх сооmношенuе в русскuх консmрукцuях с nрuчасmuямu на -н, -m,” Russ. Linguist., vol. 15, no. 2, pp. 165–167, Jun. 1991, doi: https://doi.org/10.1007/BF02528357
  48. T. S. Mally, A. L. Johnston, M. Chann, R. H. Walker, M. W. Keller, “Performance of a carbon-fiber/epoxy composite for the underwater repair of pressure equipment,” Compos. Struct., vol. 100, pp. 542–547, 2013, doi: https://doi.org/10.1016/j.compstruct.2012.12.015
  49. A. A. Mohammed et al., “Effectiveness of a novel composite jacket in repairing damaged reinforced concrete structures subject to flexural loads,” Compos. Struct., vol. 233, p. 111634, 2020, doi: https://doi.org/10.1016/j.compstruct.2019.111634
  50. R. L. Darwin, F. W. Williams, “The Development of Water Mist Fire Protection Systems for U.S. Navy Ships,” Nav. Eng. J., vol. 112, no. 6, pp. 49–57, 2000, doi: https://doi.org/10.1111/J.1559-3584.2000.TB03380.X
  51. H. Toutanji, S. Dempsey, “Stress modeling of pipelines strengthened with advanced composites materials,” Thin-Walled Struct., vol. 39, no. 2, pp. 153–165, 2001, doi: https://doi.org/10.1016/S0263-8231(00)00049-5
  52. E. M. Knox, S. Lafferty, M. J. Cowling, S. A. Hashim, “Design guidance and structural integrity of bonded connections in GRE pipes,” Compos. Part A Appl. Sci. Manuf., vol. 32, no. 2, pp. 231–241, 2001, doi: https://doi.org/10.1016/S1359-835X(00)00114-7
  53. Z. A. Alsharif, “Design model of damaged steel pipes for oil and gas industry using composite materials. Part II: Modeling,” Adv. Struct. Mater., vol. 54, pp. 147–156, 2014, doi: https://doi.org/10.1007/978-3-319-07383-5_12/FIGURES/11
  54. M. Kiani, D. Gribble, T. Mally, R. Walker, E. Locke, “Finite Element Analysis and Non-Metallic Composite Repairs, an Examination of Advanced Modeling Techniques for Safe Designs on Complex Geometries,” Materials Performance and Welding Technologies Conference and Exhibition, pp. 1–6, 2017.
  55. H. H. Arifin et al., “Stress distribution analysis of composite repair with Carbon Nanotubes reinforced putty for damaged steel pipeline,” Int. J. Press. Vessel. Pip., vol. 194, p. 104537, 2021, doi: https://doi.org/10.1016/j.ijpvp.2021.104537
  56. S. Kumar, F. Taheri, “Neuro-fuzzy approaches for pipeline condition assessment,” Nondestruct. Test. Eval., vol. 22, no. 1, pp. 35–60, 2007, doi: https://doi.org/10.1080/10589750701327858