Vol. 19 Núm. 2 (2020): Revista UIS Ingenierías
Artículos

Daño en partes de manufactura aditiva reforzadas por fibras continuas

Juan Leon Becerra
Universidad Industrial de Santander
Jorge Guillermo Díaz-Rodríguez
Universidad Industrial de Santander
Octavio Andrés González-Estrada
Universidad Industrial de Santander

Publicado 2020-04-03

Palabras clave

  • materiales compuestos,
  • manufactura aditiva,
  • modelado por deposición fundida,
  • caracterización mecánica,
  • falla progresiva

Cómo citar

Leon Becerra, J., Díaz-Rodríguez, J. G., & González-Estrada, O. A. (2020). Daño en partes de manufactura aditiva reforzadas por fibras continuas. Revista UIS Ingenierías, 19(2), 161–176. https://doi.org/10.18273/revuin.v19n2-2020018

Resumen

La fabricación aditiva (AM), y más específicamente la impresión 3D, ha comenzado una revolución de la industria de la manufactura al proporcionar capacidades de producción para piezas que eran imposibles de fabricar hace algunos años. Una tecnología bastante reciente, desarrollada por Markforged, ha elevado estas capacidades a un nuevo nivel al permitir la impresión de compuestos de matriz polimérica con refuerzo continuo de fibra. Sin embargo, por ser este un método nuevo de fabricación, no existe un modelo consolidado para predecir las características mecánicas ni los modos de falla que presentan al estar sometidas a cargas. El presente trabajo recoge los estudios sobre el daño y falla progresiva en materiales compuestos de fibras largas producidos por manufactura aditiva.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] M. Bronz and S. Karaman, “Preliminary Experimental Investigation of Small Scale Propellers at High Incidence Angle,” in 2018 AIAA Aerospace Sciences Meeting, 2018, no. January, pp. 1–10. doi: 10.2514/6.2018-1268

[2] W. M. Van Den Brink, F. Van Der Klift, R. Bruins, and M. J. M. Hermans, “Design and optimization method for 3D printed carbon reinforced aircraft components,” in ICCM International Conferences on Composite Materials, 2017, vol. 2017, pp. 20–32.

[3] A. V. Azarov, F. K. Antonov, M. V. Golubev, A. R. Khaziev, and S. A. Ushanov, “Composite 3D printing for the small size unmanned aerial vehicle structure,” Compos. Part B Eng., vol. 169, pp. 157–163, 2019. doi: 10.1016/j.compositesb.2019.03.073

[4] M. Lizut and M. K. Wojs, “Research on clutch lever of ktm motorcycle produced by using 3d printing,” Proc. Inst. Veh., no. z. 1/110, pp. 119–126, 2017.

[5] R. Brünler, D. Aibibu, M. Wöltje, A. M. M. Anthofer, and C. Cherif, “In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine,” Mater. Sci. Eng. C, vol. 76, pp. 810–817, 2017.

[6] Grand View Research, Composites Market Size, Share & Trends Analysis Report. San Francisco, CA, USA: Grand View Research, Inc, 2018.

[7] Q. Yang and B. Cox, “Cohesive models for damage evolution in laminated composites,” Int. J. Fract., vol. 133, no. 2, pp. 107–137, May 2005.

[8] C. W. Hull, “Apparatus for production of three dimensional objects by stereolithography,” United States Patent 4575330A1986.

[9] S. S. Crump, “Apparatus and method for creating three-dimensional objects,” United States Patent 51213291992.

[10] L. G. Blok, M. L. Longana, H. Yu, and B. K. S. Woods, “An investigation into 3D printing of fibre reinforced thermoplastic composites,” Addit. Manuf., vol. 22, pp. 176–186, 2018.

[11] H. Brooks and S. Molony, “Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement,” Mater. Des., vol. 90, pp. 276–283, Jan. 2016.

[12] G. Thomas, M. Antoni, and S. Gozdz, “Three dimensional printer with composite filament fabrication,” United States Patent 9156205B22015.

[13] G. Udupa, S. S. Rao, and K. V. Gangadharan, “Functionally Graded Composite Materials: An Overview,” Procedia Mater. Sci., vol. 5, pp. 1291–1299, 2014.

[14] Y. Hu and W. Cong, “A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites,” Ceramics International, vol. 44, no. 17. Elsevier Ltd and Techna Group S.r.l., pp. 20599–20612, 2018.

[15] E. Martínez, O. A. González-Estrada, and A. Martínez, “Evaluación de las propiedades tribológicas de materiales compuestos de matriz metálica ( MMCs ) procesados por técnicas de fabricación aditiva con haz láser ( SLM ),” Rev. UIS Ing., vol. 16, no. 1, pp. 101–114, 2017. doi: 10.18273/revuin.v16n1-2017010

[16] A. N. Dickson, K. A. Ross, and D. P. Dowling, “Additive manufacturing of woven carbon fibre polymer composites,” Compos. Struct., vol. 206, pp. 637–643, 2018.

[17] W. D. Zhou and J. S. Chen, “3D Printing of Carbon Fiber Reinforced Plastics and their Applications,” Mater. Sci. Forum, vol. 913, pp. 558–563, Feb. 2018.

[18] C. Mahajan and D. Cormier, “3D printing of carbon fiber composites with preferentially aligned fibers,” in IISE Annual Conference and Expo 2015, 2015, pp. 2953–2962.

[19] C. Ciftci and H. S. Sas, “A rational utilization of reinforcement material for flexural design of 3D-printed composite beams,” J. Reinf. Plast. Compos., vol. 38, no. 23–24, pp. 1040–1054, 2019.

[20] J. F. Rodríguez, J. P. Thomas, and J. E. Renaud, “Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling,” Rapid Prototyp. J., vol. 9, no. 4, pp. 219–230, 2003.

[21] W. Zhu, C. Yan, J. Yang, S. Wen, and Y. Shi, “Parameter Optimization for Preparing Carbon Fiber/Epoxy Composites by Selective Laser Sintering,” in Symposium of 2015 Annual International Solid Freeform Fabrication, 2015, pp. 2–4.

[22] P. Parandoush and D. Lin, “A review on additive manufacturing of polymer-fiber composites,” Compos. Struct., vol. 182, pp. 36–53, 2017.

[23] M. Eichenhofer, J. I. Maldonado, F. Klunker, and P. Ermanni, “Analysis of Processing Conditions for a Novel 3D-Composite Production Technique,” in 20th International Conference on Composite Materials, 2015, pp. 1–12.

[24] A. Avdeev et al., “Strength Increasing Additive Manufacturing Fused Filament Fabrication Technology, Based on Spiral Toolpath Material Deposition,” Machines, vol. 7, no. 3, p. 57, 2019.

[25] J. Justo, L. Távara, L. García-Guzmán, and F. París, “Characterization of 3D printed long fibre reinforced composites,” Compos. Struct., vol. 185, pp. 537–548, Feb. 2018.

[26] Y. Tu, Y. Tan, F. Zhang, J. Zhang, and M. A. Guofeng, “Shearing algorithm and device for the continuous carbon fiber 3D printing,” J. Adv. Mech. Des. Syst. Manuf., vol. 13, no. 1, 2019.

[27] L. Warnung, S. Estermann, and A. Reisinger, “Mechanical Properties of Fused Deposition Modeling (FDM) 3D Printing Materials,” RTejournal - Forum für Rapid Technol., no. 15, pp. 1–18, 2018.

[28] F. Bárnik, M. Vaško, M. Sága, M. Handrik, and A. Sapietová, “Mechanical properties of structures produced by 3D printing from composite materials,” MATEC Web Conf., vol. 254, p. 01018, Jan. 2019. doi: 10.1051/matecconf/201925401018

[29] G. Dong, Y. Tang, D. Li, and Y. F. F. Zhao, “Mechanical Properties of Continuous Kevlar Fiber Reinforced Composites Fabricated by Fused Deposition Modeling Process,” Procedia Manuf., vol. 26, pp. 774–781, 2018.

[30] R. Calderón-Villajos, A. J. López, L. Peponi, J. Manzano-Santamaría, and A. Ureña, “3D-printed self-healing composite polymer reinforced with carbon nanotubes,” Mater. Lett., vol. 249, pp. 91–94, 2019. doi: 10.1016/j.matlet.2019.04.069

[31] T. Isobe, T. Tanaka, T. Nomura, and R. Yuasa, “Comparison of strength of 3D printing objects using short fiber and continuous long fiber,” IOP Conf. Ser. Mater. Sci. Eng., vol. 406, no. 1, p. 012042, Sep. 2018.

[32] Q. Hu, Y. Duan, H. Zhang, D. Liu, B. Yan, and F. Peng, “Manufacturing and 3D printing of continuous carbon fiber prepreg filament,” J. Mater. Sci., vol. 53, no. 3, pp. 1887–1898, 2018.

[33] R. Matsuzaki et al., “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation,” Sci. Rep., vol. 6, no. 1, p. 23058, Sep. 2016.

[34] Y. Ibrahim, G. W. Melenka, and R. Kempers, “Additive manufacturing of Continuous Wire Polymer Composites,” Manuf. Lett., vol. 16, pp. 49–51, Apr. 2018.

[35] A. N. Dickson and D. P. Dowling, “Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing,” Compos. Struct., vol. 212, pp. 381–388, Mar. 2019.

[36] Y. Swolfs and S. T. Pinho, “3D printed continuous fibre-reinforced composites: Bio-inspired microstructures for improving the translaminar fracture toughness,” Compos. Sci. Technol., vol. 182, p. 107731, Sep. 2019.

[37] E. D. Valbuena-Niño, J. L. Endrino-Armenteros, H. A. Estupiñan-Duran, B. Pérez-Gutiérrez, and A. Díaz-Lantada, “Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser,” Respuestas, vol. 21, no. 2, p. 37, Jul. 2016.

[38] A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. R Reports, vol. 129, pp. 1–16, Jul. 2018.

[39] I. Fidan et al., “The trends and challenges of fiber reinforced additive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 102, pp. 1801–1818, Jun. 2019.

[40] R. Quelho de Macedo, R. T. L. Ferreira, and K. Jayachandran, “Determination of mechanical properties of FFF 3D printed material by assessing void volume fraction, cooling rate and residual thermal stresses,” Rapid Prototyp. J., vol. 25, no. 10, pp. 1661–1683, Nov. 2019.

[41] J. M. Chacón, M. A. Caminero, P. J. Núñez, E. García-Plaza, I. García-Moreno, and J. M. Reverte, “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties,” Compos. Sci. Technol., vol. 181, p. 107688, Sep. 2019.

[42] S. Ravindrababu, Y. Govdeli, Z. W. Wong, and E. Kayacan, “Evaluation of the influence of build and print orientations of unmanned aerial vehicle parts fabricated using fused deposition modeling process,” J. Manuf. Process., vol. 34, pp. 659–666, Aug. 2018.

[43] J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Mater. Des., vol. 124, pp. 143–157, Jun. 2017.

[44] C. Oztan et al., “Microstructure and mechanical properties of three dimensional-printed continuous fiber composites,” J. Compos. Mater., vol. 53, no. 2, pp. 271–280, 2019.

[45] G. W. Melenka, B. K. O. Cheung, J. S. Schofield, M. R. Dawson, and J. P. Carey, “Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures,” Compos. Struct., vol. 153, pp. 866–875, Oct. 2016.

[46] L. J. Gibson and M. F. Ashby, Cellular solids: Structure and properties, second edition, 2nd ed. Cambridge: Cambridge University Press, 2014.

[47] O. A. González-Estrada, A. Pertuz, and J. E. Quiroga Mendez, “Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts,” Key Eng. Mater., vol. 774, pp. 161–166, 2018.

[48] F. Van Der Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, and R. Matsuzaki, “3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens,” Open J. Compos. Mater., vol. 06, no. 01, pp. 18–27, 2016.

[49] R. J. J. Hart, E. G. G. Patton, and O. Sapunkov, “Characterization of Continuous Fiber-Reinforced Composite Materials Manufactured Via Fused Filament Fabrication,” Warren, MI, 2018.

[50] J. D. Argüello-Bastos, O. A. González-Estrada, C. A. Ruiz-Florián, A. D. Pertuz-Comas, and E. D. V-Niño, “Study of mechanical properties under compression failure in reinforced composite materials produced by additive manufacturing,” J. Phys. Conf. Ser., vol. 1126, p. 012005, Nov. 2018.

[51] J. D. Argüello-Bastos, C. A. Ruiz-Florián, O. A. González-Estrada, A. D. Pertuz-Comas, and A. Martínez-Amariz, “Compression tests performed in reinforced rigid matrix composite varying the reinforcement material,” J. Phys. Conf. Ser., vol. 1126, p. 012007, Nov. 2018.

[52] Z. Hou, X. Tian, J. Zhang, and D. Li, “3D printed continuous fibre reinforced composite corrugated structure,” Compos. Struct., vol. 184, pp. 1005–1010, 2018.

[53] G. Chabaud, M. Castro, C. Denoual, and A. Le Duigou, “Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor
structural applications,” Addit. Manuf., vol. 26, pp. 94–105, Mar. 2019.

[54] M. Mohammadizadeh, A. Imeri, I. Fidan, and M. Elkelany, “3D printed fiber reinforced polymer composites - Structural analysis,” Compos. Part B Eng., vol. 175, p. 107112, 2019.

[55] R. Walter, K. Friedrich, and M. Gurka, “Characterization of mechanical properties of additively manufactured polymers and composites,” in AIP Conference Proceedings, 2018, vol. 1981, p. 020033.

[56] T. A. Dutra, R. T. L. Ferreira, H. B. Resende, and A. Guimarães, “Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 133, pp. 1–15, Mar. 2019.

[57] J. G. Diaz, J. S. Leon, O. A. González-Estrada, and A. Pertuz, “Analytical review of mechanical properties composites for 3D printed components,” J. Mater. Eng. Perform., vol. submitted, 2020.

[58] M. J. Mesa Quezada, “Puesta a punto de un sistema de fabricación aditiva para materiales compuestos,” Universidad de Sevilla, Sevilla, 2015.

[59] M. A. Caminero, J. M. Chacón, I. García-Moreno, and J. M. Reverte, “Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling,” Polym. Test., vol. 68, pp. 415–423, 2018.

[60] C. Kousiatza, D. Tzetzis, and D. Karalekas, “In-situ characterization of 3D printed continuous fiber reinforced composites: A methodological study using fiber Bragg grating sensors,” Compos. Sci. Technol., vol. 174, pp. 134–141, 2019.

[61] Y. Swolfs and S. T. T. Pinho, “Designing and 3D Printing Continuous Fibre-Reinforced Composites with a High Fracture Toughness,” in Proceedings of the American Society for Composites: Thirty- first Technical Conference, 2016, pp. 1–7.

[62] F. García Móstoles, M. R. Martinez Miranda, B. López, E. Guinaldo Fernández, A. Torres Salas, and A. Jara, “Análisis de ensayos de ILSS de probetas de material compuesto reforzadas con fibra continua producidas mediante impresión 3D,” Mater. compuestos, vol. 2, no. 1, pp. 97–101, 2018.

[63] A. C. Paredes, O. Bohórquez, A. Pertuz, Y. Rueda, and O. A. González-Estrada, “Interlaminar tensile strength for composite materials made by additive manufacturing,” J. Phys. Conf. Ser., vol. 1386, no. 012002, pp. 1–8, 2019.

[64] I. S. S. Bitar, N. T. T. Aboulkhair, and R. Leach, “The application of composite through-thickness assessment to additively manufactured structures,” Solid Free. Fabr. Symp., 2017.

[65] G. D. Goh and W. Y. Yeong, “Mode I interlaminar fracture toughness of additively manufactured carbon fibre thermoplastic,” in Proceedings of the 3rd International Conference on Progress in Additive Manufacturing, 2018, pp. 505–510.

[66] F. Akasheh and H. Aglan, “Fracture toughness enhancement of carbon fiber–reinforced polymer composites utilizing additive manufacturing fabrication,” J. Elastomers Plast., vol. 51, no. 7–8, pp. 698–711, Nov. 2019.

[67] T. Dutra and H. Resende, “Interlaminar shear strength of continuous carbon fiber reinforced thermoplastic composites manufactured by 3D printing,” in Procceedings of the 24th ABCM International Congress of Mechanical Engineering, 2017, pp. 1–9.

[68] A. Imeri, I. Fidan, M. Allen, D. A. Wilson, and S. Canfield, “Fatigue analysis of the fiber reinforced additively manufactured objects,” Int. J. Adv. Manuf. Technol., vol. 98, pp. 2717–2724, Oct. 2018.

[69] A. Imeri, I. Fidan, M. Allen, and G. Perry, “Effect of Fiber Orientation in Fatigue Properties of FRAM Components,” Procedia Manuf., vol. 26, pp. 892–899, 2018.

[70] A. D. Pertuz, S. Díaz-Cardona, and O. A. González-Estrada, “Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique,” Int. J. Fatigue, vol. 130, p. 105275, 2020. doi: 10.1016/j.ijfatigue.2019.105275

[71] C. W. Ziemian, R. D. Ziemian, and K. V. Haile, “Characterization of stiffness degradation caused by fatigue damage of additive manufactured parts,” Mater. Des., vol. 109, pp. 209–218, Nov. 2016.

[72] B. Giemza, M. Domański, M. Deliś, and D. Kapica, “Tribological properties of 3D printed components,” J. KONBiN, vol. 48, pp. 447–463, 2018.

[73] M. A. Caminero, J. M. Chacón, I. García-Moreno, and G. P. Rodríguez, “Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling,” Compos. Part B Eng., vol. 148, pp. 93–103, 2018.

[74] J. Naranjo-Lozada, H. Ahuett-Garza, P. Orta-Castañón, W. M. H. Verbeeten, and D. Sáiz-González, “Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing,” Addit. Manuf., vol. 26, pp. 227–241, 2019.

[75] M. Araya-Calvo et al., “Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology,” Addit. Manuf., vol. 22, pp. 157–164, 2018.

[76] H. Mei, Z. Ali, I. Ali, and L. Cheng, “Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites,” Adv. Compos. Hybrid Mater., vol. 2, no. 2, pp. 312–319, 2019.

[77] K. Argawal, M. Houser, S. Vangapally, and A. Kumar Vulli, “Process – Property relationships in additive manufacturing of nylon-fiberglass composites using Taguchi design of experiments,” in Solid Freeform Fabrication Symposium, 2017, pp. 399–412.

[78] A. Kvalsvig, X. Yuan, J. Potgieter, and P. Cao, “Analysing the tensile properties of 3D printed fibre reinforced thermoplastic composite specimens,” in 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2017, pp. 1–6.

[79] F. Ning, W. Cong, Y. Hu, and H. Wang, “Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties,” J. Compos. Mater., vol. 51, no. 4, pp. 451–462, 2017.

[80] S. Sinha and N. A. Meisel, “Influence of process interruption on mechanical properties of material extrusion parts,” Rapid Prototyp. J., vol. 24, no. 5, pp. 821–827, 2018.

[81] G. D. L. D. Goh et al., “Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics,” Mater. Des., vol.
137, pp. 79–89, 2018.

[82] M. Mohammadizadeh, I. Fidan, M. Allen, and A. Imeri, “Creep behavior analysis of additively manufactured fiber-reinforced components,” Int. J. Adv. Manuf. Technol., vol. 99, no. 5–8, pp. 1225–1234, 2018.

[83] L. Pyl, K. A. A. Kalteremidou, and D. Van Hemelrijck, “Exploration of the design freedom of 3D printed continuous fibre-reinforced polymers in open-hole tensile strength tests,” Compos. Sci. Technol., vol. 171, pp. 135–151, 2019.

[84] D.-A. Türk, R. Kussmaul, M. Zogg, C. Klahn, B. Leutenecker-Twelsiek, and M. Meboldt, “Composites Part Production with Additive Manufacturing Technologies,” Procedia CIRP, vol. 66, no. section 4, pp. 306–311, 2017.

[85] E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, 2nd ed. Boca Ratón, Florida, U.S.A.: CRC Press, 2013.

[86] D. Yang, L. W. K. Wu, and Y. Sheng, “A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites,” J. Manuf. Mater. Process., vol. 1, no. 1, p. 10, Sep. 2017.

[87] A. Garland and G. Fadel, “Optimizing Topology and Gradient Orthotropic Material Properties Under Multiple Loads,” J. Comput. Inf. Sci. Eng., vol. 19, no. 2, p. 021007, 2019.

[88] G. A. Meneses, A. Pereira, and I. F. Menezes, “Lattice Structures Design by Means of Topology Optimization,” in Congreso Argentino de Mecánica Computacional, 2018, pp. 2111–2120.

[89] O. A. González-Estrada, J. S. León, and A. Pertuz, “Influence of the boundary condition on the first ply failure and stress distribution on a multilayer composite pipe by the finite element
method,” J. Phys. Conf. Ser., vol. 1159, p. 012013, Jan. 2019.

[90] M. A. Caminero, I. García-Moreno, G. P. Rodríguez, and J. M. Chacón, “Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites,” Compos. Part B Eng., vol. 165, pp. 131–142, 2019.

[91] O. Focke et al., “Multiscale non-destructive investigations of aeronautic structures : from a single fiber to complex shaped fiber-reinforced composites,” in 8th Conference on Industrial Computed Tomography, 2018, pp. 1–7.

[92] E. A. Papon, A. Haque, and S. B. Mulani, “Process optimization and stochastic modeling of void contents and mechanical properties in additively manufactured composites,” Compos. Part B Eng., vol. 177, p. 107325, 2019.

[93] A. Garg and A. Bhattacharya, “An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study,” Int. J. Mech. Sci., vol. 120, pp. 225–236, 2017.

[94] R. T. L. Ferreira, I. A. Ashcroft, S. Li, and P. Zhuo, “Optimisation of Fibre-Paths in Composites Produced by Additive Manufacturing,” in EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization, Cham: Springer International Publishing, 2019, pp. 1083–1094.

[95] H. Al Abadi, H. T. Thai, V. Paton-Cole, and V. I. Patel, “Elastic properties of 3D printed fibre-reinforced structures,” Compos. Struct., vol. 193, no. February, pp. 8–18, 2018.

[96] I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 11, pp. 2333–2341, 2007.

[97] L. L. Vignoli, M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov, “Comparative analysis of micromechanical models for the elastic composite laminae,” Compos. Part B Eng., vol. 174, p. 106961, 2019.

[98] J. Z. Parrado-Agudelo and C. Narváez-Tovar, “Mechanical characterization of polylactic acid, polycaprolactone and Lay-Fomm 40 parts manufactured by fused deposition modeling, as a function of the printing parameters,” ITECKNE, vol. 16, no. 2, pp. 25–31, 2019.

[99] I. T. Garces and C. Ayranci, “A view into additive manufactured electro-active reinforced smart composite structures,” Manuf. Lett., vol. 16, pp. 1–5, 2018.

[100] N. van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, and M. Tehrani, “Additively manufactured carbon fiber-reinforced composites: State of the art and perspective,” Addit. Manuf., vol. 31, p. 100962, 2020. doi: 10.1177/0021998316646169