Vol. 22 Núm. 4 (2023): Revista UIS Ingenierías
Artículos

Modelizado de carga basado en datos para redes de distribución activa

Daladier Osorio-Vásquez
Universidad Tecnológica de Pereira
Sandra Pérez-Londoño
Universidad Tecnológica de Pereira
Juan Mora-Flórez
Universidad Tecnológica de Pereira

Publicado 2023-11-15

Palabras clave

  • modelizado de carga,
  • modelos basados en datos,
  • modelos dinámicos,
  • modelos estáticos,
  • parametrización de modelos basados en mediciones,
  • recursos energéticos distribuidos,
  • red de distribución activa
  • ...Más
    Menos

Cómo citar

Osorio-Vásquez , D. ., Pérez-Londoño , S. ., & Mora-Flórez , J. . (2023). Modelizado de carga basado en datos para redes de distribución activa. Revista UIS Ingenierías, 22(4), 93–102. https://doi.org/10.18273/revuin.v22n4-2023009

Resumen

Los sistemas eléctricos están experimentando un rápido desarrollo, impulsado principalmente por las políticas de reducción de carbono en el sector energético y los avances tecnológicos que introducen nuevos elementos y procesos. En este contexto en constante evolución, la transición hacia redes de distribución activas (ADNs) representa un significativo avance tecnológico y tener modelos precisos para cada dispositivo presente en las ADNs es crucial para una representación adecuada de su dinámica. Sin embargo, el modelado de la carga presenta desafíos debido a la gran diversidad de componentes de carga, las composiciones que varían en el tiempo y la dependencia de varios factores. A pesar de estos desafíos, comprender el comportamiento de la carga es fundamental para la planificación y operación eficiente de las ADNs; por lo tanto, disponer de modelos de carga precisos es indispensable para realizar estudios preventivos y forenses. En este artículo, se presenta un análisis de diversos artículos provenientes de las bases de datos científicas más relevantes, centrándose específicamente en el desafío del modelado de carga basado en mediciones en las ADNs. La principal contribución de este documento radica en mejorar la representación y comprensión de las cargas en ADNs, a través del análisis de enfoques actuales, desafíos y estrategias de modelizado basado en mediciones. Además, busca servir como referencia para investigaciones futuras en el campo del modelado de carga.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. N. Pourghaderi, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, M. Kabirifar y M. Lehtonen, “Exploiting DERs’ Flexibility Provision in Distribution and Transmission Systems Interface,” IEEE Transactions on Power Systems, vol. 38, pp. 1963-1977, 2023, doi: https://doi.org/10.1109/TPWRS.2022.3209132
  2. J. Flores-Robert, J. Brouwer, “Optimal design of a distributed energy resource system that economically reduces carbon emissions,” Applied Energy, vol. 232, pp. 119-138, 2018, doi: https://doi.org/10.1016/j.apenergy.2018.09.029
  3. S. P. Chowdhury, P. Crossley, Microgrids and active distribution networks. London, United Kingdom, 2009, doi: https://doi.org/10.1049/PBRN006E
  4. C. Wang, P. Ju, F. Wu, X. Pan y Z. Wang, “A systematic review on power system resilience from the perspective of generation, network, and load,” Renewable and Sustainable Energy Reviews, vol. 112567, p. 112567, 2022, doi: https://doi.org/10.1016/j.rser.2022.112567
  5. A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, D. Zhao, “Load modeling—A review,” IEEE Transactions on Smart Grid, vol. 9, pp. 5986-5999, 2017.
  6. L. Chávarro, S. Pérez, J. Mora, “An adaptive approach for dynamic load modeling in microgrid,” IEEE Transactions on Smart Grid, vol. 12, pp. 2834-2843, 2021, doi: https://doi.org/10.1109/TSG.2021.3064046
  7. M. Roos, P. H. Nguyen, J. Morren, J. Slootweg, “Modeling and experimental validation of power electronic loads and DERs for microgrid islanding simulations,” IEEE Transactions on Power Systems, vol. 35, pp. 2279-2288, 2019, doi: https://doi.org/10.1109/TPWRS.2019.2953757
  8. “IEEE Guide for Load Modeling and Simulations for Power Systems,” IEEE Std 2781-2022, pp. 1-88, 2022.
  9. L. Rodríguez, S. Pérez, J. Mora, “Measurement-based exponential recovery load model: Development and validation,” Dyna, vol. 83, pp. 131--140, 2015.
  10. G. Mitrentsis, H. Lens, “Unsupervised learning method for clustering dynamic behavior in the context of power systems,” IFAC-PapersOnLine, vol. 53, pp. 13024--13029, 2020, doi: https://doi.org/10.1016/j.ifacol.2020.12.2170
  11. E. O. Kontis, T. A. Papadopoulos, M. H. Syed, E. Guillo, G. H. Burt, G. K. Papagiannis, “Artificial-intelligence method for the derivation of generic aggregated dynamic equivalent models,” IEEE Transactions on Power Systems, vol. 34, pp. 2947-2956, 2019, doi: https://doi.org/10.1109/TPWRS.2019.2894185
  12. G. Mitrentsis, H. Lens, “Probabilistic dynamic model of active distribution networks using Gaussian processes,” IEEE Madrid PowerTech, pp. 1-6, 2021, doi: https://doi.org/10.1109/PowerTech46648.2021.9494816
  13. G. Mitrentsis, H. Lens, “A Gaussian process framework for the probabilistic dynamic modeling of active distribution networks using exogenous variables,” Electric Power Systems Research, vol. 211, p. 108403, 2022, doi: https://doi.org/10.1016/j.epsr.2022.108403
  14. S. Pérez, A. Garcés, M. Bueno, J. Mora, “Modelizado de componentes en micro-redes AC, Pereira, Colombia”, Universidad Tecnológica de Pereira, 2020.
  15. D. Karlsson, D. Hill, “Modelling and identification of nonlinear dynamic loads in power systems,” IEEE Transactions on Power Systems, vol. 9, pp. 157-166, 1994.
  16. C. Wang, Z. Wang, J. Wang, D. Zhao, “SVM-based parameter identification for composite ZIP and electronic load modeling,” IEEE Transactions on Power Systems, vol. 34, pp. 182-193, 2018, doi: https://doi.org/10.1109/TPWRS.2018.2865966
  17. S. Arora, P. Balsara, D. Bhatia, “Digital implementation of constant power load (CPL), active resistive load, constant current load and combinations,” 2016 IEEE Dallas Circuits and Systems Conference (DCAS), pp. 1--4, 2016, doi: https://doi.org/10.1109/DCAS.2016.7791138
  18. M. Overlin, C. Smith, J. Kirtley, “A hybrid algorithm for parameter estimation (HAPE) for dynamic constant power loads,” IEEE Transactions on Industrial Electronics, vol. 68, pp. 10326-10335, 2020, doi: https://doi.org/10.1109/TIE.2020.3029470
  19. M. Jahromi, M. Ameli, “Measurement-based modelling of composite load using genetic algorithm,” Electric Power Systems Research, vol. 158, pp. 82-91, 2018, doi: https://doi.org/10.1016/j.epsr.2017.12.023
  20. A. Rouhani, A. Abur, “Real-time dynamic parameter estimation for an exponential dynamic load model,” IEEE Transactions on Smart Grid, vol. 7, pp. 1530-1536, 2015, doi: https://doi.org/10.1109/TSG.2015.2449904
  21. E. Polykarpou, E. Kyriakides, “Parameter estimation for measurement-based load modeling using the Levenberg-Marquardt algorithm,” 2016 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1-6, 2016, doi: https://doi.org/10.1109/MELCON.2016.7495363
  22. S. Rizvi, S. Sadanandan, A. Srivastava, “Real-time parameter tracking of power-electronics interfaced composite ZIP load model,” IEEE Transactions on Smart Grid, vol. 13, pp. 3891-3902, 2021, doi: https://doi.org/10.1109/TSG.2021.3119507
  23. B. Choi, H. Chiang, Y. Li, H. Li, Y. Chen, D. Huang, M. Lauby, “Measurement-based dynamic load models: derivation, comparison, and validation,” IEEE Transactions on Power Systems, vol. 21, pp. 1276-1283, 2006, doi: https://doi.org/10.1109/TPWRS.2006.876700
  24. F. Tuffner, K. Schneider, J. Hansen, M. Elizondo, “Modeling load dynamics to support resiliency-based operations in low-inertia microgrids,” IEEE Transactions on Smart Grid, vol. 10, pp. 2726-2737, 2018, doi: https://doi.org/10.1109/TSG.2018.2809452
  25. A. Mahdavian, A. Ghadimi, M. Bayat, “Microgrid small-signal stability analysis considering dynamic load model,” IET Renewable Power Generation, vol. 15, pp. 2799--2813, 2021, doi: https://doi.org/10.1049/rpg2.12203
  26. J. Penaloza, J. Adu, A. Borghetti, F. Napolitano, F. Tossani, C. Nucci, “Influence of load dynamic response on the stability of microgrids during islanding transition,” Electric Power Systems Research, vol. 190, p. 106607, 2021, doi: https://doi.org/10.1016/j.epsr.2020.106607
  27. K. Rahmati, R. Ebrahimi, V. Darabad, “Optimal dynamic multi-microgrid structuring for improving distribution system resiliency considering time-varying voltage-dependent load models,” Electric Power Systems Research, vol. 221, p. 109488, 2023, https://doi.org/10.1016/j.epsr.2023.109488
  28. G. Mitrentsis, H. Lens, “Data-driven dynamic models of active distribution networks using unsupervised learning techniques on field measurements,” IEEE Transactions on Smart Grid, vol. 12, pp. 2952-2965, 2021, https://doi.org/10.1109/TSG.2021.3057763
  29. E. Kontis, G. Papagiannis, M. Syed, E. Guillo, G. Burt, T. Papadopoulos, A. Chrysochos, “Development of measurement-based load models for the dynamic simulation of distribution grids,” 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1-6, 2017.
  30. C. Zheng, S. Wang, Y. Liu, C. Liu, W. Xie, C. Fang y S. Liu, “A novel equivalent model of active distribution networks based on LSTM,” IEEE transactions on neural networks and learning systems, pp. 2611--2624, 2019, doi: https://doi.org/10.1109/TNNLS.2018.2885219
  31. P. Wang, Z. Zhang, Q. Huang, X. Tang, W. Lee, “Robustness-improved method for measurement-based equivalent modeling of active distribution network,” IEEE Transactions on Industry Applications, vol. 57, pp. 2146--2155, 2021, doi: https://doi.org/10.1109/TIA.2021.3057358