Vol. 22 Núm. 4 (2023): Revista UIS Ingenierías
Artículos

Capacidad de alojamiento y dimensionamiento óptimo: caso de estudio colombiano

Diego Andrés González-Sotto
Universidad Nacional de Colombia
César Arango-Lemoine
Universidad Nacional de Colombia
Dahiana López-García
Universidad Nacional de Colombia
Adriana Arango-Manrique
Universidad del Norte

Publicado 2023-11-10

Palabras clave

  • generación distribuida,
  • generación variable,
  • análisis técnico-económico,
  • capacidad de alojamiento,
  • simulación técnica

Cómo citar

González-Sotto , D. A. ., Arango-Lemoine , C. ., López-García , D. ., & Arango-Manrique , A. . (2023). Capacidad de alojamiento y dimensionamiento óptimo: caso de estudio colombiano. Revista UIS Ingenierías, 22(4), 103–114. https://doi.org/10.18273/revuin.v22n4-2023010

Resumen

La transición energética ha facilitado la integración de recursos de generación renovable en las redes de distribución a nivel mundial. Sin embargo, esta transición ha presentado nuevos desafíos operativos para estas redes. Uno de estos desafíos implica determinar el tamaño óptimo de estos recursos y la capacidad de alojamiento de las redes de distribución, con el objetivo de maximizar su potencial para mejorar los parámetros técnicos del sistema. Para abordar este tema, este artículo propone estrategias para optimizar la capacidad de generación y la selección de nodos en redes de distribución colombianas, priorizando los nodos de menor voltaje para mejorar continuidad del suministro. Se desarrollan metodologías específicas debido a la naturaleza pasiva y radial de estas redes.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Programa de las Naciones Unidas para el Desarrollo, “Objetivos de Desarrollo Sostenible PNUD,” 2019. [Online]. Available: https://www.undp.org/content/undp/es/home/sustainable-development-goals.html
  2. Departamento Nacional de Planeación, “Energía asequible y no contaminante - La Agenda 2030 en Colombia - Objetivos de Desarrollo Sostenible,” 2019. 7 [Online]. Available: https://www.ods.gov.co/es/objetivos/energia-asequible-y-no-contaminante
  3. F. Herrera, S. Herrero, “ODS en Colombia Los retos para 2030,” Programa de las Naciones Unidas para el Desarrollo, p. 74, 2018.
  4. Unión Europea, “Acuerdo de París | Acción por el Clima,” 2020. 7 [Online]. Available: https://ec.europa.eu/clima/policies/international/negotiations/paris_es
  5. E. Papadis, G. Tsatsaronis, “Challenges in the decarbonization of the energy sector,” Energy, vol. 205, Aug. 2020. doi: https://doi.org/10.1016/j.energy.2020.118025
  6. Cerrejón, “Carbón, Nuestro Producto | Cerrejón | Minería Responsable,” [Online]. Available: https://www.cerrejon.com/index.php/nuestra-operacion/nuestro-producto/
  7. B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge, B. Hannegan, “Achieving a 100% renewable grid,” IEEE Power Energy Mag, vol. 2017, doi: https://doi.org/10.1109/MPE.2016.2637122
  8. A. Rodríguez Hernández et al., “Plan Energético Nacional Colombia: Ideario Energético 2050 República De Colombia Ministerio de Minas y Energía Tomás González Estrada,” Ministro Unidad De Planeación Minero Energética Ángela Inés Cadena Monroy Directora General Secretario General Colaboradores. [Online]. Available: http://www.upme.gov.co/docs/pen/pen_idearioenergetico2050.pdf
  9. UPME, Integración de las energías renovables no convencionales en Colombia. 2015, doi: https://doi.org/10.1021/ja304618v
  10. UPME, “Plan De Expansión De Referencia Generación – Transmisión 2015 – 2029,” Ministerio de Minas y Energía, p. 616, 2016. [Online]. Available: https://www1.upme.gov.co/Energia_electrica/Planes-expansion/Plan-Expansion-2015-2029/Plan_GT_2015-2029_VF_22-12-2015.pdf
  11. Misión crecimiento verde, DNP, and ENERSINC, “Energy Supply Situation in,” Departamento Nacional de Planeación, p. 165, 2017. [Online]. Available: https://2022.dnp.gov.co/Crecimiento-Verde/Documents/Resultados/17.02.2021.LibroS%C3%ADntesisCrecimientoVerde.pdf
  12. El Congreso de la República de Colombia, “Ley 1715 del 13 de mayo de 2014,” p. 26, 2014, doi: https://doi.org/10.32964/tj13.5
  13. M. S. Nazir et al., “Optimization configuration of energy storage capacity based on the microgrid reliable output power,” J Energy Storage, vol. 32, p. 101866, 2020, doi: https://doi.org/10.1016/j.est.2020.101866
  14. H. Cristian, N. Bizon, B. Alexandru, “Design of hybrid power systems using homer simulator for different renewable energy sources,” in Proceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence, 2017, pp. 1–7, doi: https://doi.org/10.1109/ECAI.2017.8166507
  15. H. Tazvinga, B. Zhu, X. Xia, “Energy dispatch strategy for a photovoltaic-wind-diesel-battery hybrid power system,” Solar Energy, vol. 108, pp. 412–420, 2014, doi: https://doi.org/10.1016/j.solener.2014.07.025
  16. R. Carriveau, Fundamental and Advanced Topics in Wind Power. 2012, doi: https://doi.org/10.5772/731
  17. H. Cristian, N. Bizon, B. Alexandru, “Design of hybrid power systems using homer simulator for different renewable energy sources,” in Proceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2017, 2017, pp. 1–7, doi: https://doi.org/10.1109/ECAI.2017.8166507
  18. IDEAM, “Atlas de radiación solar, ultraviolerta y ozono de colombia.” p. 172, 2017, doi: https://doi.org/10.1017/CBO9781107415324.004
  19. J. Gómez Ramírez, J. D. Murcia Murcia, I. Cabeza Rojas, “La energía solar fotovoltaica en Colombia: potenciales, antecedentes y perspectivas,” Universidad Santo Tomás, p. 19, 2017. [Online]. Available: https://docplayer.es/79432495-La-energia-solar-fotovoltaica-en-colombia-potenciales-antecedentes-y-perspectivas.html
  20. Institute of Electrical and Electronics Engineers., ICHQP 2008 : 13th International Conference on Harmonics & Quality of Power : University of Wollongong, Australia, 28th September-1st October 2008. IEEE, 2008.
  21. Y. Cho, E. Lee, K. Baek, J. Kim, “Stochastic Optimization-Based hosting capacity estimation with volatile net load deviation in distribution grids,” Appl Energy, vol. 341, Jul. 2023, doi: https://doi.org/10.1016/j.apenergy.2023.121075
  22. E. Mulenga, M. H. J. Bollen, N. Etherden, “A review of hosting capacity quantification methods for photovoltaics in low-voltage distribution grids,” International Journal of Electrical Power and Energy Systems, vol. 115, 2020. doi: https://doi.org/10.1016/j.ijepes.2019.105445
  23. A. Ali, K. Mahmoud, M. Lehtonen, “Maximizing Hosting Capacity of Uncertain Photovoltaics by Coordinated Management of OLTC, VAr Sources and Stochastic EVs,” International Journal of Electrical Power and Energy Systems, vol. 127, May 2021, doi: https://doi.org/10.1016/j.ijepes.2020.106627
  24. J. Yuan, Y. Weng, C. W. Tan, “Determining maximum hosting capacity for PV systems in distribution grids,” International Journal of Electrical Power and Energy Systems, vol. 135, 2022, doi: https://doi.org/10.1016/j.ijepes.2021.107342
  25. S. M. Ismael, S. H. E. Abdel Aleem, A. Y. Abdelaziz, A. F. Zobaa, “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renewable Energy, vol. 130, pp. 1002–1020, 2019, doi: https://doi.org/10.1016/j.renene.2018.07.008
  26. O. Castro, “Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico,” Inge-CUC, vol. 6, no. 6, p. 8, 2010. [Online]. Available: https://revistascientificas.cuc.edu.co/ingecuc/article/view/296/286
  27. Ecopetrol, “Plan prospectivo y estratégico de la región caribe colombiana,” Observatorio del Caribe Colombiano, p. 26, 2013. [Online]. Available: https://observatorio.epacartagena.gov.co/wp-content/uploads/2016/11/PER_CARIBE_ para_web.pdf
  28. P. A. Abdalla, A. Varol, “Advantages to disadvantages of cloud computing for small-sized business,” in 7th International Symposium on Digital Forensics and Security, ISDFS 2019, 2019, doi: https://doi.org/10.1109/ISDFS.2019.8757549