Flujo magnético cuantizado en un condensado superconductordes dos-bandas con centros de anclaje tipo red de Kagome
Publicado 2024-06-10
Palabras clave
- Ginzburg-Landau,
- Estado de Shubnikov,
- Superconductor,
- Tipo II,
- Vórtices
- Red de Kagome ...Más
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
En este trabajo estudiamos la configuración del vórtice en un cuadrado superconductor mesoscópico en presencia de un campo magnético externo H aplicado paralelo a su vector de superficie. Estudiamos las curvas de magnetización en bucle completo, la inducción magnética y la densidad de electrones superconductores para la muestra considerando las condiciones de contorno de Neumann para el parámetro de orden, mediante extrapolación de longitud de Gennes . La muestra presenta un centro de anclaje tipo red de Kagome a diferente temperatura crítica. Resolvemos las ecuaciones generalizadas de Ginzburg-Landau dependientes del tiempo para un sistema de dos condensados usando el método de variable de enlace considerando un proceso enfriamiento de campo. Nuestros resultados muestran que los vórtices siempre están ubicados en los centros de anclaje con configuraciones no convencionales, debido al acoplamiento utilizado.
Descargas
Referencias
- J. Barba-Ortega, M. R. Joya, E. Sardella, “ Resistive state of a thin superconducting strip with an engineered central defect”, The European Physical Journal B, vol. 92, no. 143, 2019, doi: https://doi.org/10.1140/epjb/e2019-100082-y
- G. J. Kimmel, A. Glatz, V. M. Vinokur, I. A. Sadovskyy, “Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects,” Sci. Reports,vol. 9, no. 1, 2019, doi: https://doi.org/10.1038/s41598-018-36285-4
- V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck and Y. Bruynseraede, “Effect of sample topology on the critical fields of mesoscopic superconductors,” Nature vol. 373, 1995, doi: https://doi.org/10.1038/373319a0
- C. Aguirre, M. R. Joya, J. Barba-Ortega, “Released power in a vortex-antivortex pairs annihilation process,” Revista UIS Ingenierias, vol. 20, no. 1, 2021, doi: https://doi.org/10.18273/revuin.v20n1-2021014
- C. Aguirre, M. R. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Revista UIS Ingenierias, vol. 20, no. 1, 2020, doi: https://doi.org/10.18273/revuin.v19n1-2020011
- J. Carlstrom, E. Babaev, M. Speight, “Type-1.5 superconductivity in multiband systems: Effects of interband couplings,” Phys. Rev. B., vol. 83, 2011, doi: https://doi.org/10.1103/PhysRevB.83.174509
- C. Aguirre, J. Faundez, J. Barba-Ortega, “Vortex state in a superconducting mesoscopic irregular octagon,” Mod. Phys. Lett. B., vol. 36, 10, 2022, doi: https://doi.org/10.1142/S0217984922500294
- C. Aguirre, M. R. Joya, J.Barba-Ortega, “Vortex state in a two-condensate superconducting film considering a topological coupling, ” Mod. Phys. Lett. B, vol 37, no. 38, 2023, doi: https://doi.org/10.1142/S021798492350001X
- C. Aguirre, A. de Arruda, J. Faundez, J. Barba-Ortega, “ZFC process in 2+1 and 3+1 multi-band superconductor,” Physica B: Condensed Matter, vol. 615, 2021, doi: https://doi.org/10.1016/j.physb.2021.413032
- J. Tindall, F. Schlawin, M. Buzzi, D. Nicoletti, J. R. Coulthard, H. Gao, A. Cavalleri, M. A. Sentef, D. Jaksch, “Dynamical Order and Superconductivity in a Frustrated Many-Body System,” Phys. Rev. Lett., vol. 125, 2020, doi: https://doi.org/10.1103/PhysRevLett.125.137001
- E. F. Galindez, J. A. Rojas, D. Sachez, D. A. Landinez, J. Roa, “Propiedades ópticas, eléctricas, estructurales y morfológicas de arcilla mineral KAl4Si2O12/Mg3Si2O9/Fe2O3 de la región montañosa de Machado, Tarairá, Colombia” Revista Ciencia en Desarrollo, vol. 13, no. 1, pp. 43-55, 2022, doi: https://doi.org/10.19053/01217488.v13.n1.2022.12884
- W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-ii superconductors,” J. Comput. Phys., vol. 123, no. 2, 1996, doi: https://doi.org/10.1006/jcph.1996.0022
- G. Buscaglia, C. Bolech, C. Lopez, Connectivity and Superconductivity. Heidelberg: Springer, 2000, doi: https://doi.org/10.1007/3-540-44532-3
- P. G. de Gennes, Superconductivity in Metals and Alloys, Westview Pres, 1989. [Online]. Available: https://library.navoiy-uni.uz/files/gennes%20p.d.,%20pincus%20p.a.%20-%20superconductivity%20of%20metals%20and%20alloys%20(1999)(274s).pdf
- Z. P. Yin, K. Haule, G. Kotliar, “Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: Insights from first-principles calculations,” Phys. Rev. B, vol. 86, 2012, doi: https://doi.org/10.1103/PhysRevB.86.195141
- J. Clepkens, A. W. Lindquist, X. Liu, H. Kee, “Higher angular momentum pairings in interorbital shadowed-triplet superconductors: Application to Sr2RuO4,” Phys. Rev. B., vol. 104, 2021, doi: https://doi.org/10.1103/PhysRevB.104.104512
- S. Chaudhar, Shama, J. Singh, A. Consiglio, D. Di Sante, R. Thomale, Y. Singh, “Role of electronic correlations in the kagome-lattice superconductor LaRh3B2,” Phys. Rev. B., vol. 107, 2023, doi: https://doi.org/10.1103/PhysRevB.107.085103
- M. Shi, F. Yu, Y. Yang, F. Meng, B. Lei, Y. Luo, Z. Sun, J. He, R. Wang, Z. Jiang, Z. Liu, D. Shen, T. Wu, Z. Wang, Z. Xiang, J. Ying and X. Chen, “A new class of bilayer kagome lattice compounds with Dirac nodal lines and pressure-induced superconductivity,” Nature Communicatios, vol. 13, 2022, doi: https://doi.org/10.1038/s41467-022-30442-0
- H. Jiang, M. Liu, S. Yu, “Impact of the orbital current order on the superconducting properties of the kagome superconductors, ” Phys. Rev. B., vol. 107, 2023, doi: https://doi.org/10.1103/PhysRevB.107.064506
- F. Du, R. Li, S. Luo, Y. Gong, L. Yanchun, J. Sheng, R. B. ˙Ortiz, Y. Liu, X. Xu, S. D. Wilson, C. Cao, Y. Song, H. Yuan, “Superconductivity modulated by structural phase transitions in pressurized vanadium-based kagome metals,” Phys. Rev. B., vol. 106, 2022, doi: https://doi.org/10.1103/PhysRevB.106.024516
- S. Gazit, M. Randeria, A. Vishwanath, “Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories,” Nature Physics, vol. 13, pp. 484-490, 2017, doi: https://doi.org/10.1038/nphys4028
- T. Neupert, M. Denner, J. Yin, R. Thomale M. Zahid Hasan, “Charge order and superconductivity in kagome materials,” Nature Physics,vol. 18, 2022, doi: https://doi.org/10.1038/s41567-021-01404-y
- K. Jiang, T. Wu, J. Yin, Z. Wang, M. Hasan, S. Wilson, X. Chen J. Hu, “Kagome superconductors AV3Sb5 (A = K, Rb, Cs),” National Science Review, vol. 10, 2023, doi: https://doi.org/10.1093/nsr/nwac199
- J. S. Leon. M. R. Joya and J. Barba-Ortega, “Kagome–Honeycomb structure produced using a wave laser in a conventional superconductor,” Optik- International Journal for Light and Electron Optics, vol. 172, pp. 311-316, 2018, doi: https://doi.org/10.1016/j.ijleo.2018.07.036
- R. Lou, A. Fedorov, Q. Yin, A. Kuibarov, Z. Tu, C. Gong, E. F. Schwier, B. Buchner, H. Lei, S. Borisenko, “Charge-Density-Wave-Induced Peak-Dip-Hump Structure and the Multiband Superconductivity in a Kagome Superconductor CsV3Sb5,” Phys. Rev. Lett., vol. 128, 2022, doi: https://doi.org/10.1103/PhysRevLett.128.036402
- S. J. Chapman, Q. Du, M. S. Gunzburger, Z. Angnew, “A model for variable thickness superconducting thin films,” Math. Phys., vol. 47, 1996, doi: https://doi.org/10.1007/BF00916647
- Q. Du. M. D. Gunzburger, J. S. Peterson, “Computational simulation of type-II superconductivity including pinning phenomena,” Phys. Rev. B., vol. 51, 1995, doi: https://doi.org/10.1103/PhysRevB.51.16194
- Q. Du, M.D. Gunzburger, “A model for superconducting thin films having variable thickness,” Physica D: Nonlinear Phenomena, vol. 69, 1993, doi: https://doi.org/10.1016/0167-2789(93)90089-J
- V. S. Souto E. C. S. Duarte, E. Sardella, R. Zadorosny, “Kinematic vortices induced by defects in gapless superconductors,” Phys. Lett. A., vol. 419, 2021, doi: https://doi.org/10.1016/j.physleta.2021.127742