Vol. 23 Núm. 4 (2024): Revista UIS Ingenierías
Artículos

Variaciones morfológicas y estructurales de instrumentos endodónticos de Níquel-Titanio sometidos a cargas de instrumentación: estudio in vitro

Yenny Marcela Orozco-Ocampo
Universidad Autónoma de Manizales
César Augusto Álvarez-Vargas
Universidad Autónoma de Manizales
Francy Nelly Jiménez-García
Universidad Autónoma de Manizales
Daniel Escobar-Rincón
Universidad de Caldas

Publicado 2024-11-22

Palabras clave

  • Instrumento endodóntico,
  • Aleación NiTi,
  • Microscopía óptica,
  • XRD,
  • SEM,
  • Canal radicular artificial,
  • Deformación de Cauchy,
  • Curvas Bézier,
  • Fractura,
  • WaveOne Gold Primary
  • ...Más
    Menos

Cómo citar

Orozco-Ocampo, Y. M., Álvarez-Vargas, C. A., Jiménez-García, F. N., Escobar-Rincón, D. ., & Jaramillo-Gil, P. X. (2024). Variaciones morfológicas y estructurales de instrumentos endodónticos de Níquel-Titanio sometidos a cargas de instrumentación: estudio in vitro. Revista UIS Ingenierías, 23(4), 31–44. https://doi.org/10.18273/revuin.v23n4-2024003

Resumen

Para identificar variaciones estructurales y morfológicas de las limas endodónticas WOG Primary a medida que instrumentaban canales artificiales, se realizaron experimentos en canales artificiales fabricados con Dialil ftalato para identificar variaciones morfológicas y estructurales en instrumentos endodónticos WaveOne-Gold-Primary (n=10). Los canales se sumergieron en agua a 38°C ± 1°C y se irrigaron con NaClO-5%. Los instrumentos se inspeccionaron mediante microscopía óptica para medir la deformación unitaria de Cauchy. Los parámetros de red, la microdeformación y la textura se obtuvieron mediante difracción de rayos X. Se utilizó microscopía electrónica de barrido para identificar bandas de deslizamiento y caracterizar la fractura. Se utilizaron análisis de varianza y pruebas de Bonferroni para los datos. El desentorchamiento y el alargamiento fueron pronunciados cerca de 54 picoteos; a 62 picoteos se produjo la fractura. Se propusieron modelos matemáticos para relacionar la deformación unitaria y la textura con el número de picoteos. Se observaron grandes deformaciones plásticas relacionadas con fractura dúctil, causada por un mecanismo de torsión-adhesión. La diferencia entre las intensidades relativas en difracción de Rayos-X de la muestra evidenció cambios de textura entre 0 y 20 picoteos y un nuevo cambio después de 62 picoteos.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. G. R. M. La Rosa, F. S. Canova, L. Generali, E. Pedullà, “The Role of Pecking Motion Depths in Dynamic Cyclic Fatigue Resistance: In Vitro Study,” Int Dent J, vol. I, pp. 1–7, Feb. 2024, doi: https://doi.org/10.1016/j.identj.2024.01.014
  2. M. B. McGuigan, C. Louca, and H. F. Duncan, “Endodontic instrument fracture: Causes and prevention,” Br Dent J, vol. 214, no. 7, pp. 341–348, 2013, doi: https://doi.org/10.1038/sj.bdj.2013.324
  3. A. Carvalho, M. Freitas, L. Reis, D. Montalvão, and M. Fonte, “Rotary Fatigue Testing to Determine the Fatigue Life of NiTi alloy Wires: An Experimental and Numerical Analisys,” Procedia Structural Integrity, vol. 1, pp. 34–41, 2016, doi: https://doi.org/10.1016/j.prostr.2016.02.006
  4. M. J. Mahtabi, N. Shamsaei, and M. R. Mitchell, “Fatigue of Nitinol: The state-of-the-art and ongoing challenges,” J Mech Behav Biomed Mater, vol. 50, pp. 228–254, 2015, doi: https://doi.org/10.1016/j.jmbbm.2015.06.010
  5. L. Testarelli et al., “Cyclic fatigue of NiTi instruments used in complex curvatures with continuous or reciprocating rotation,” G Ital Endod, vol. 28, no. 2, pp. 87–90, 2014, doi: https://doi.org/10.1016/j.gien.2014.10.003
  6. N. E. Dowling, Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture, and Fatigue, Fourth., vol. Fourth Edition. 2013.
  7. Y. M. Orozco-Ocampo, “Influencia de los parámetros de corte en el desgaste de micro-herramientas para micro-mecanizado de materiales biocompatibles,” Tesis de Maestría en Ingeniería Mecánica, Universidad del Norte, 2012.
  8. H. P. Lopes, C. N. Elias, M. V. B. Vieira, V. T. L. Vieira, L. C. De Souza, A. L. Dos Santos, “Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments,” J Endod, vol. 42, no. 6, pp. 965–968, 2016, doi: https://doi.org/10.1016/j.joen.2016.03.001
  9. I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J Mater Process Technol, vol. 201, no. 1–3, pp. 585–589, May 2008, doi: https://doi.org/10.1016/j.jmatprotec.2007.11.187
  10. P. R. Garcia, P. D. Resende, N. I. A. Lopes, I. F. da C. Peixoto, V. T. L. Buono, and A. C. D. Viana, “Structural Characteristics and Torsional Resistance Evaluation of WaveOne and WaveOne Gold Instruments after Simulated Clinical Use,” J Endod, vol. 45, no. 8, pp. 1041–1046, 2019, doi: https://doi.org/10.1016/j.joen.2019.04.009
  11. M. G. A. Bahia, M. C. C. Melo, and V. T. L. Buono, “Influence of simulated clinical use on the torsional behavior of nickel-titanium rotary endodontic instruments,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 5, pp. 675–680, 2006, doi: https://doi.org/10.1016/j.tripleo.2005.04.019
  12. D. Al-Sudani et al., “Cyclic fatigue of nickel-titanium rotary instruments in a double (S-shaped) simulated curvature,” J Endod, vol. 38, no. 7, pp. 987–989, 2012, doi: https://doi.org/10.1016/j.joen.2012.03.025
  13. P. Van der Vyver and M. Vorster, “Clinical application of WaveOne® Gold reciprocating instruments: part 1,” Endodontic Practice, 2021. [Online]. Available: https://endopracticeus.com/ce-articles/clinical-application-of-waveone-gold-reciprocating-instruments-part-1/
  14. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat Methods, vol. 9, no. 7, pp. 671–675, Jul. 2012, doi: https://doi.org/10.1038/nmeth.2089
  15. I. Statgraphics Technologies, “Statgraphics Centurion XIX,” The Plains, Virginia: 19.
  16. J. H. Ha, S. W. Kwak, A. Sigurdsson, S. W. Chang, S. K. Kim, and H. C. Kim, “Stress Generation during Pecking Motion of Rotary Nickel-titanium Instruments with Different Pecking Depth,” J Endod, vol. 43, no. 10, pp. 1688–1691, Oct. 2017, doi: https://doi.org/10.1016/j.joen.2017.04.013
  17. J. H. Ha, S. S. Park, “Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals,” Restor Dent Endod, vol. 37, no. 4, p. 215, 2012, doi: https://doi.org/10.5395/rde.2012.37.4.215
  18. V. Faus-Llácer, N. H. Kharrat, C. Ruiz-Sánchez, I. Faus-Matoses, Á. Zubizarreta-Macho, and V. Faus-Matoses, “The effect of taper and apical diameter on the cyclic fatigue resistance of rotary endodontic files using an experimental electronic device,” Applied Sciences, vol. 11, no. 2, pp. 1–14, 2021, doi: https://doi.org/10.3390/app11020863
  19. Y. Shen, G. S. pan Cheung, B. Peng, and M. Haapasalo, “Defects in Nickel-Titanium Instruments after Clinical Use. Part 2: Fractographic Analysis of Fractured Surface in a Cohort Study,” J Endod, vol. 35, no. 1, 2009, doi: https://doi.org/10.1016/j.joen.2008.10.013
  20. J. Y. Kim, G. Shun-Pan Cheung, S. H. Park, D. C. Ko, J. W. Kim, H. C. Kim, “Effect from cyclic fatigue of nickel-titanium rotary files on torsional resistance,” J Endod, vol. 38, no. 4, pp. 527–530, Apr. 2012, doi: https://doi.org/10.1016/j.joen.2011.12.018
  21. R. C. Wycoff and D. W. Berzins, “An in vitro comparison of torsional stress properties of three different rotary nickel-titanium files with a similar cross-sectional design,” J Endod, vol. 38, no. 8, pp. 1118–1120, Aug. 2012, doi: https://doi.org/10.1016/j.joen.2012.04.022
  22. L. Campbell, Y. Shen, H. M. Zhou, M. Haapasalo, “Effect of fatigue on torsional failure of nickel-titanium controlled memory instruments,” J Endod, vol. 40, no. 4, 2014, doi: https://doi.org/10.1016/j.joen.2013.12.035
  23. F. Lo Savio, E. Pedullà, E. Rapisarda, G. La Rosa, “Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments,” in Procedia Structural Integrity, 2016. doi: https://doi.org/10.1016/j.prostr.2016.06.167
  24. M. Thu et al., “Influence of different kinematics on stationary and dynamic torsional behavior of JIZAI nickel-titanium rotary instruments: An in vitro study,” J Dent Sci, vol. 18, no. 3, 2023, doi: https://doi.org/10.1016/j.jds.2022.10.005
  25. F. Lo Savio, E. Pedullà, E. Rapisarda, and G. La Rosa, “Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments,” Procedia Structural Integrity, vol. 2, pp. 1311–1318, 2016, doi: https://doi.org/10.1016/j.prostr.2016.06.167
  26. L. Campbell, Y. Shen, H. M. Zhou, and M. Haapasalo, “Effect of fatigue on torsional failure of nickel-titanium controlled memory instruments,” J Endod, vol. 40, no. 4, pp. 562–565, 2014, doi: https://doi.org/10.1016/j.joen.2013.12.035
  27. R. C. Wycoff, D. W. Berzins, “An In Vitro Comparison of Torsional Stress Properties of Three Different Rotary Nickel-Titanium Files with a Similar Cross-Sectional Design,” J Endod, vol. 38, no. 8, pp. 1118–1120, Aug. 2012, doi: https://doi.org/10.1016/j.joen.2012.04.022
  28. J.-Y. Kim, G. Shun-Pan Cheung, S.-H. Park, D.-C. Ko, J.-W. Kim, and H.-C. Kim, “Effect from Cyclic Fatigue of Nickel-Titanium Rotary Files on Torsional Resistance,” J Endod, vol. 38, no. 4, pp. 527–530, Apr. 2012, doi: https://doi.org/10.1016/j.joen.2011.12.018
  29. M. Kucher, M. Dannemann, R. Füßel, M.-T. Weber, and N. Modler, “Sliding friction and wear of human teeth against biocompatible polyether ether ketone (PEEK) under various wear conditions,” Wear, vol. 486–487, p. 204110, Dec. 2021, doi: https://doi.org/10.1016/j.wear.2021.204110
  30. R. T. Downs and M. Hall-Wallace, “The American Mineralogist crystal structure database,” American Mineralogist, vol. 88, pp. 247–250, 2003, 2023.
  31. S. Oh et al., “Bending resistance and cyclic fatigue resistance of WaveOne Gold, Reciproc Blue, and HyFlex EDM instruments,” J Dent Sci, vol. 15, no. 4, pp. 472–478, Dec. 2020, doi: https://doi.org/10.1016/j.jds.2019.10.003
  32. M. Alcalde et al., “Cyclic fatigue and torsional strength of three different thermally treated reciprocating nickel-titanium instruments,” Clin Oral Investig, vol. 22, May 2018, doi: https://doi.org/10.1007/s00784-017-2295-8
  33. J. D. Ospina-Correa, D. A. Olaya-Muñoz, J. J. Toro-Castrillón, A. Toro, A. Ramírez-Hernández, and J. P. Hernández-Ortíz, “Grain polydispersity and coherent crystal reorientations are features to foster stress hotspots in polycrystalline alloys under load,” Science Advances, vol. 7, no. 15, 2021, doi: https://doi.org/10.1126/sciadv.abe3890
  34. M. Carl, B. Zhang, M. Young, “Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires,” Shape Memory and Superelasticity, Jul. 2016, doi: https://doi.org/10.1007/s40830-016-0073-0
  35. B. H. Toby and R. B. Von Dreele, “GSAS-II: The genesis of a modern open-source all purpose crystallography software package,” J Appl Crystallogr, vol. 46, no. 2, pp. 544–549, Apr. 2013, doi: https://doi.org/10.1107/S0021889813003531
  36. OriginLab Corporation, “Origin(Pro),” 2021, Northampton, MA, USA: 2021.
  37. K. Huang, H. Yin, M. Li, Q. Sun, “Grain size dependence of stress-assisted two-way memory effect in Ti-50.04 at.% Ni shape memory alloy,” Materials Science and Engineering: A, vol. 856, p. 143872, Oct. 2022, doi: https://doi.org/10.1016/J.MSEA.2022.143872
  38. C. Jia, M. R. Akbarpour, M. Ahmadi Gharamaleki, T. Ebadzadeh, and H. S. Kim, “Synthesis and characterization of novel NiTi–Ni3Ti/SiC nanocomposites prepared by mechanical alloying and microwave-assisted sintering process,” Ceram Int, vol. 49, no. 14, pp. 23358–23366, 2023, doi: https://doi.org/10.1016/J.CERAMINT.2023.04.168
  39. M. R. Daymond, M. L. Young, J. D. Almer, D. C. Dunand, “Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi,” Acta Mater, vol. 55, no. 11, 2007, doi: https://doi.org/10.1016/j.actamat.2007.03.013
  40. S. B. Alapati et al., “Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments.,” J Endod, vol. 35, no. 11, pp. 1589–1593, Nov. 2009, doi: https://doi.org/10.1016/j.joen.2009.08.004
  41. G. Kuhn, L. Jordan, “Fatigue and mechanical properties of nickel-titanium endodontic instruments,” J Endod, vol. 28, no. 10, pp. 716–720, 2002, doi: https://doi.org/10.1097/00004770-200210000-00009
  42. L. Jordan, A. Sultan, and P. Vermaut, “Microstructural and mechanical characterizations of new NiTi endodontic instruments,” MATEC Web of Conferences, vol. 33, 2015, doi: https://doi.org/10.1051/matecconf/20153303005
  43. S. Zinelis, M. Darabara, T. Takase, K. Ogane, G. D. Papadimitriou, “The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 103, no. 6, pp. 843–847, 2007, doi: https://doi.org/10.1016/j.tripleo.2006.12.026