Variaciones morfológicas y estructurales de instrumentos endodónticos de Níquel-Titanio sometidos a cargas de instrumentación: estudio in vitro
Publicado 2024-11-22
Palabras clave
- Instrumento endodóntico,
- Aleación NiTi,
- Microscopía óptica,
- XRD,
- SEM
- Canal radicular artificial,
- Deformación de Cauchy,
- Curvas Bézier,
- Fractura,
- WaveOne Gold Primary ...Más
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Para identificar variaciones estructurales y morfológicas de las limas endodónticas WOG Primary a medida que instrumentaban canales artificiales, se realizaron experimentos en canales artificiales fabricados con Dialil ftalato para identificar variaciones morfológicas y estructurales en instrumentos endodónticos WaveOne-Gold-Primary (n=10). Los canales se sumergieron en agua a 38°C ± 1°C y se irrigaron con NaClO-5%. Los instrumentos se inspeccionaron mediante microscopía óptica para medir la deformación unitaria de Cauchy. Los parámetros de red, la microdeformación y la textura se obtuvieron mediante difracción de rayos X. Se utilizó microscopía electrónica de barrido para identificar bandas de deslizamiento y caracterizar la fractura. Se utilizaron análisis de varianza y pruebas de Bonferroni para los datos. El desentorchamiento y el alargamiento fueron pronunciados cerca de 54 picoteos; a 62 picoteos se produjo la fractura. Se propusieron modelos matemáticos para relacionar la deformación unitaria y la textura con el número de picoteos. Se observaron grandes deformaciones plásticas relacionadas con fractura dúctil, causada por un mecanismo de torsión-adhesión. La diferencia entre las intensidades relativas en difracción de Rayos-X de la muestra evidenció cambios de textura entre 0 y 20 picoteos y un nuevo cambio después de 62 picoteos.
Descargas
Referencias
- G. R. M. La Rosa, F. S. Canova, L. Generali, E. Pedullà, “The Role of Pecking Motion Depths in Dynamic Cyclic Fatigue Resistance: In Vitro Study,” Int Dent J, vol. I, pp. 1–7, Feb. 2024, doi: https://doi.org/10.1016/j.identj.2024.01.014
- M. B. McGuigan, C. Louca, and H. F. Duncan, “Endodontic instrument fracture: Causes and prevention,” Br Dent J, vol. 214, no. 7, pp. 341–348, 2013, doi: https://doi.org/10.1038/sj.bdj.2013.324
- A. Carvalho, M. Freitas, L. Reis, D. Montalvão, and M. Fonte, “Rotary Fatigue Testing to Determine the Fatigue Life of NiTi alloy Wires: An Experimental and Numerical Analisys,” Procedia Structural Integrity, vol. 1, pp. 34–41, 2016, doi: https://doi.org/10.1016/j.prostr.2016.02.006
- M. J. Mahtabi, N. Shamsaei, and M. R. Mitchell, “Fatigue of Nitinol: The state-of-the-art and ongoing challenges,” J Mech Behav Biomed Mater, vol. 50, pp. 228–254, 2015, doi: https://doi.org/10.1016/j.jmbbm.2015.06.010
- L. Testarelli et al., “Cyclic fatigue of NiTi instruments used in complex curvatures with continuous or reciprocating rotation,” G Ital Endod, vol. 28, no. 2, pp. 87–90, 2014, doi: https://doi.org/10.1016/j.gien.2014.10.003
- N. E. Dowling, Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture, and Fatigue, Fourth., vol. Fourth Edition. 2013.
- Y. M. Orozco-Ocampo, “Influencia de los parámetros de corte en el desgaste de micro-herramientas para micro-mecanizado de materiales biocompatibles,” Tesis de Maestría en Ingeniería Mecánica, Universidad del Norte, 2012.
- H. P. Lopes, C. N. Elias, M. V. B. Vieira, V. T. L. Vieira, L. C. De Souza, A. L. Dos Santos, “Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments,” J Endod, vol. 42, no. 6, pp. 965–968, 2016, doi: https://doi.org/10.1016/j.joen.2016.03.001
- I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J Mater Process Technol, vol. 201, no. 1–3, pp. 585–589, May 2008, doi: https://doi.org/10.1016/j.jmatprotec.2007.11.187
- P. R. Garcia, P. D. Resende, N. I. A. Lopes, I. F. da C. Peixoto, V. T. L. Buono, and A. C. D. Viana, “Structural Characteristics and Torsional Resistance Evaluation of WaveOne and WaveOne Gold Instruments after Simulated Clinical Use,” J Endod, vol. 45, no. 8, pp. 1041–1046, 2019, doi: https://doi.org/10.1016/j.joen.2019.04.009
- M. G. A. Bahia, M. C. C. Melo, and V. T. L. Buono, “Influence of simulated clinical use on the torsional behavior of nickel-titanium rotary endodontic instruments,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 5, pp. 675–680, 2006, doi: https://doi.org/10.1016/j.tripleo.2005.04.019
- D. Al-Sudani et al., “Cyclic fatigue of nickel-titanium rotary instruments in a double (S-shaped) simulated curvature,” J Endod, vol. 38, no. 7, pp. 987–989, 2012, doi: https://doi.org/10.1016/j.joen.2012.03.025
- P. Van der Vyver and M. Vorster, “Clinical application of WaveOne® Gold reciprocating instruments: part 1,” Endodontic Practice, 2021. [Online]. Available: https://endopracticeus.com/ce-articles/clinical-application-of-waveone-gold-reciprocating-instruments-part-1/
- C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat Methods, vol. 9, no. 7, pp. 671–675, Jul. 2012, doi: https://doi.org/10.1038/nmeth.2089
- I. Statgraphics Technologies, “Statgraphics Centurion XIX,” The Plains, Virginia: 19.
- J. H. Ha, S. W. Kwak, A. Sigurdsson, S. W. Chang, S. K. Kim, and H. C. Kim, “Stress Generation during Pecking Motion of Rotary Nickel-titanium Instruments with Different Pecking Depth,” J Endod, vol. 43, no. 10, pp. 1688–1691, Oct. 2017, doi: https://doi.org/10.1016/j.joen.2017.04.013
- J. H. Ha, S. S. Park, “Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals,” Restor Dent Endod, vol. 37, no. 4, p. 215, 2012, doi: https://doi.org/10.5395/rde.2012.37.4.215
- V. Faus-Llácer, N. H. Kharrat, C. Ruiz-Sánchez, I. Faus-Matoses, Á. Zubizarreta-Macho, and V. Faus-Matoses, “The effect of taper and apical diameter on the cyclic fatigue resistance of rotary endodontic files using an experimental electronic device,” Applied Sciences, vol. 11, no. 2, pp. 1–14, 2021, doi: https://doi.org/10.3390/app11020863
- Y. Shen, G. S. pan Cheung, B. Peng, and M. Haapasalo, “Defects in Nickel-Titanium Instruments after Clinical Use. Part 2: Fractographic Analysis of Fractured Surface in a Cohort Study,” J Endod, vol. 35, no. 1, 2009, doi: https://doi.org/10.1016/j.joen.2008.10.013
- J. Y. Kim, G. Shun-Pan Cheung, S. H. Park, D. C. Ko, J. W. Kim, H. C. Kim, “Effect from cyclic fatigue of nickel-titanium rotary files on torsional resistance,” J Endod, vol. 38, no. 4, pp. 527–530, Apr. 2012, doi: https://doi.org/10.1016/j.joen.2011.12.018
- R. C. Wycoff and D. W. Berzins, “An in vitro comparison of torsional stress properties of three different rotary nickel-titanium files with a similar cross-sectional design,” J Endod, vol. 38, no. 8, pp. 1118–1120, Aug. 2012, doi: https://doi.org/10.1016/j.joen.2012.04.022
- L. Campbell, Y. Shen, H. M. Zhou, M. Haapasalo, “Effect of fatigue on torsional failure of nickel-titanium controlled memory instruments,” J Endod, vol. 40, no. 4, 2014, doi: https://doi.org/10.1016/j.joen.2013.12.035
- F. Lo Savio, E. Pedullà, E. Rapisarda, G. La Rosa, “Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments,” in Procedia Structural Integrity, 2016. doi: https://doi.org/10.1016/j.prostr.2016.06.167
- M. Thu et al., “Influence of different kinematics on stationary and dynamic torsional behavior of JIZAI nickel-titanium rotary instruments: An in vitro study,” J Dent Sci, vol. 18, no. 3, 2023, doi: https://doi.org/10.1016/j.jds.2022.10.005
- F. Lo Savio, E. Pedullà, E. Rapisarda, and G. La Rosa, “Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments,” Procedia Structural Integrity, vol. 2, pp. 1311–1318, 2016, doi: https://doi.org/10.1016/j.prostr.2016.06.167
- L. Campbell, Y. Shen, H. M. Zhou, and M. Haapasalo, “Effect of fatigue on torsional failure of nickel-titanium controlled memory instruments,” J Endod, vol. 40, no. 4, pp. 562–565, 2014, doi: https://doi.org/10.1016/j.joen.2013.12.035
- R. C. Wycoff, D. W. Berzins, “An In Vitro Comparison of Torsional Stress Properties of Three Different Rotary Nickel-Titanium Files with a Similar Cross-Sectional Design,” J Endod, vol. 38, no. 8, pp. 1118–1120, Aug. 2012, doi: https://doi.org/10.1016/j.joen.2012.04.022
- J.-Y. Kim, G. Shun-Pan Cheung, S.-H. Park, D.-C. Ko, J.-W. Kim, and H.-C. Kim, “Effect from Cyclic Fatigue of Nickel-Titanium Rotary Files on Torsional Resistance,” J Endod, vol. 38, no. 4, pp. 527–530, Apr. 2012, doi: https://doi.org/10.1016/j.joen.2011.12.018
- M. Kucher, M. Dannemann, R. Füßel, M.-T. Weber, and N. Modler, “Sliding friction and wear of human teeth against biocompatible polyether ether ketone (PEEK) under various wear conditions,” Wear, vol. 486–487, p. 204110, Dec. 2021, doi: https://doi.org/10.1016/j.wear.2021.204110
- R. T. Downs and M. Hall-Wallace, “The American Mineralogist crystal structure database,” American Mineralogist, vol. 88, pp. 247–250, 2003, 2023.
- S. Oh et al., “Bending resistance and cyclic fatigue resistance of WaveOne Gold, Reciproc Blue, and HyFlex EDM instruments,” J Dent Sci, vol. 15, no. 4, pp. 472–478, Dec. 2020, doi: https://doi.org/10.1016/j.jds.2019.10.003
- M. Alcalde et al., “Cyclic fatigue and torsional strength of three different thermally treated reciprocating nickel-titanium instruments,” Clin Oral Investig, vol. 22, May 2018, doi: https://doi.org/10.1007/s00784-017-2295-8
- J. D. Ospina-Correa, D. A. Olaya-Muñoz, J. J. Toro-Castrillón, A. Toro, A. Ramírez-Hernández, and J. P. Hernández-Ortíz, “Grain polydispersity and coherent crystal reorientations are features to foster stress hotspots in polycrystalline alloys under load,” Science Advances, vol. 7, no. 15, 2021, doi: https://doi.org/10.1126/sciadv.abe3890
- M. Carl, B. Zhang, M. Young, “Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires,” Shape Memory and Superelasticity, Jul. 2016, doi: https://doi.org/10.1007/s40830-016-0073-0
- B. H. Toby and R. B. Von Dreele, “GSAS-II: The genesis of a modern open-source all purpose crystallography software package,” J Appl Crystallogr, vol. 46, no. 2, pp. 544–549, Apr. 2013, doi: https://doi.org/10.1107/S0021889813003531
- OriginLab Corporation, “Origin(Pro),” 2021, Northampton, MA, USA: 2021.
- K. Huang, H. Yin, M. Li, Q. Sun, “Grain size dependence of stress-assisted two-way memory effect in Ti-50.04 at.% Ni shape memory alloy,” Materials Science and Engineering: A, vol. 856, p. 143872, Oct. 2022, doi: https://doi.org/10.1016/J.MSEA.2022.143872
- C. Jia, M. R. Akbarpour, M. Ahmadi Gharamaleki, T. Ebadzadeh, and H. S. Kim, “Synthesis and characterization of novel NiTi–Ni3Ti/SiC nanocomposites prepared by mechanical alloying and microwave-assisted sintering process,” Ceram Int, vol. 49, no. 14, pp. 23358–23366, 2023, doi: https://doi.org/10.1016/J.CERAMINT.2023.04.168
- M. R. Daymond, M. L. Young, J. D. Almer, D. C. Dunand, “Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi,” Acta Mater, vol. 55, no. 11, 2007, doi: https://doi.org/10.1016/j.actamat.2007.03.013
- S. B. Alapati et al., “Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments.,” J Endod, vol. 35, no. 11, pp. 1589–1593, Nov. 2009, doi: https://doi.org/10.1016/j.joen.2009.08.004
- G. Kuhn, L. Jordan, “Fatigue and mechanical properties of nickel-titanium endodontic instruments,” J Endod, vol. 28, no. 10, pp. 716–720, 2002, doi: https://doi.org/10.1097/00004770-200210000-00009
- L. Jordan, A. Sultan, and P. Vermaut, “Microstructural and mechanical characterizations of new NiTi endodontic instruments,” MATEC Web of Conferences, vol. 33, 2015, doi: https://doi.org/10.1051/matecconf/20153303005
- S. Zinelis, M. Darabara, T. Takase, K. Ogane, G. D. Papadimitriou, “The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 103, no. 6, pp. 843–847, 2007, doi: https://doi.org/10.1016/j.tripleo.2006.12.026