Diseño y fabricación de un metamaterial con resonadores para disipar vibraciones mecánicas
Publicado 2024-11-22
Palabras clave
- metamaterial,
- arquitectura celular,
- vibraciones,
- resonador,
- transmisibilidad
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Las vibraciones mecánicas han sido un problema recurrente en las industrias manufactureras, por eso, su control y aislamiento son foco de muchas investigaciones. Los metamateriales son un nuevo concepto de materiales artificiales con propiedades sintonizadas. Esto quiere decir que la arquitectura celular del material es diseñada para mejorar sus propiedades, incluyendo la capacidad para amortiguamiento. Este trabajo propone un nuevo material centrado en el mejoramiento de su capacidad de amortiguamiento. Su arquitectura celular está basada en una estructura para soportar carga y con resonadores para la disipación de energía de vibración. Los resonadores están diseñados y estudiados alrededor de un rango de frecuencia específico a través de un modelo numérico. Un modelo físico es fabricado con manufactura aditiva y ensayado para determinar el coeficiente de transmisibilidad. Los resultados de las pruebas experimentales son reportados, y estos demuestran que la capacidad de amortiguamiento ha mejorado por el metamaterial propuesto.
Descargas
Referencias
- H. T. Chen, A. J. Taylor, N. Yu, “A review of metasurfaces: Physics and applications,” Reports on Progress in Physics, vol. 79, no. 7, 2016, doi: https://doi.org/10.1088/0034-4885/79/7/076401
- J. Sun, L. Kang, R. Wang, L. Liu, L. Sun, and J. Zhou, “Low loss negative refraction metamaterial using a close arrangement of split-ring resonator arrays,” New Journal of Physics, vol. 12, Aug. 2010, doi: https://doi.org/10.1088/1367-2630/12/8/083020
- A. Ali, A. Mitra, and B. Aïssa, “Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices,” Nanomaterials, vol. 12, no. 6, 2022, doi: https://doi.org/10.3390/nano12061027
- L. Wu et al., “A brief review of dynamic mechanical metamaterials for mechanical energy manipulation,” Materials Today, vol. 44, pp. 168–193, 2021, doi: https://doi.org/10.1016/j.mattod.2020.10.006
- I. Hossain, M. Samsuzzaman, A. Hoque, M. H. Baharuddin, N. B. M. Sahar, and M. T. Islam, “Polarization insensitive broadband zero indexed nano-meta absorber for optical region applications,” Computers, Materials and Continua, vol. 71, no. 1, pp. 993–1009, 2022, doi: https://doi.org/10.32604/cmc.2022.021435
- D. Lavazec, G. Cumunel, D. Duhamel, and C. Soize, “Experimental evaluation and model of a nonlinear absorber for vibration attenuation,” Communications in Nonlinear Science and Numerical Simulation, vol. 69, pp. 386–397, 2019, doi: https://doi.org/10.1016/j.cnsns.2018.10.009
- S. A. Nooraldinvand, H. M. Sedighi, and A. Yaghootian, “A Novel Elastic Metamaterial with Multiple Resonators for Vibration Suppression,” Advances in Condensed Matter Physics, vol. 2021, 2021, doi: https://doi.org/10.1155/2021/3914210
- G. Hu, L. Tang, R. Das, S. Gao, and H. Liu, “Acoustic metamaterials with coupled local resonators for broadband vibration suppression,” AIP Advances, vol. 7, no. 2, 2017, doi: https://doi.org/10.1063/1.4977559
- Y. J. Yoo et al., “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Scientific Reports, vol. 5, Sep. 2015, doi: https://doi.org/10.1038/srep14018
- N. S. Gao, X. Y. Guo, B. Z. Cheng, Y. N. Zhang, Z. Y. Wei, and H. Hou, “Elastic wave modulation in hollow metamaterial beam with acoustic black hole,” IEEE Access, vol. 7, pp. 124141–124146, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2938250
- Y. Y. Chen, M. v. Barnhart, J. K. Chen, G. K. Hu, C. T. Sun, G. L. Huang, “Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale,” Composite Structures, vol. 136, pp. 358–371, 2016, doi: https://doi.org/10.1016/j.compstruct.2015.09.048
- Y. Li, S. Cao, Y. Shen, and Y. Meng, “Phononic band-gaps of Hoberman spherical metamaterials in low frequencies,” Materials and Design, vol. 181, 2019, doi: https://doi.org/10.1016/j.matdes.2019.107935
- D. Roca, M. I. Hussein, “Broadband and Intense Sound Transmission Loss by a Coupled-Resonance Acoustic Metamaterial,” Physical Review Applied, vol. 16, no. 4, 2021, doi: https://doi.org/10.1103/PhysRevApplied.16.054018
- W. Wei, D. Chronopoulos, and H. Meng, “Broadband vibration attenuation achieved by 2d elasto-acoustic metamaterial plates with rainbow stepped resonators,” Materials, vol. 14, no. 17, 2021, doi: https://doi.org/10.3390/ma14174759
- C. Comi and L. Driemeier, “Wave propagation in cellular locally resonant metamaterials,” Latin American Journal of Solids and Structures, vol. 15, no. 4, May 2018, doi: https://doi.org/10.1590/1679-78254327
- H. Meng, D. Chronopoulos, A. T. Fabro, W. Elmadih, and I. Maskery, “Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation,” Journal of Sound and Vibration, vol. 465, 2020, doi: https://doi.org/10.1016/j.jsv.2019.115005
- A. Nateghi, L. Sangiuliano, C. Claeys, E. Deckers, B. Pluymers, and W. Desmet, “Vibration attenuation in pipes: Design and experimental validation of a resonant metamaterial solution,” in COMPDYN 2017 - Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2017, vol. 2, pp. 4778–4795. doi: https://doi.org/10.7712/120117.5761.17379
- P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Physical Review Letters, vol. 113, no. 1, 2014, doi: https://doi.org/10.1103/PhysRevLett.113.014301
- H. Meng, D. Chronopoulos, A. T. Fabro, I. Maskery, and Y. Chen, “Optimal design of rainbow elastic metamaterials,” International Journal of Mechanical Sciences, vol. 165, 2020, doi: https://doi.org/10.1016/j.ijmecsci.2019.105185
- N. Kukreja and P. Singhal, “Design and verify a natural frequency using ANSYS software,” in Materials Today: Proceedings, 2021, vol. 45, pp. 3255–3258. doi: https://doi.org/10.1016/j.matpr.2020.12.386
- W. Wei, F. Peng, Y. Li, B. Chen, Y. Xu, and Y. Wei, “Optimization design of extrusion roller of rp1814 roller press based on ansys workbench,” Applied Sciences, vol. 11, no. 20, Oct. 2021, doi: https://doi.org/10.3390/app11209584
- Y. Tang, Y. Yu, J. Shi, and S. Zhang, “Modal and harmonic response analysis of key components of robotic arm based on ANSYS,” in Vibroengineering Procedia, vol. 12, pp. 109–114, 2017, doi: https://doi.org/10.21595/vp.2017.18703
- J. D. Echeverry, C. Guarnizo Lemus, and Á. Á. Orozco, “Analisis De La Densidad Espectral De Potencia En Registros” Scientia et Technica, vol. 3, no. 35, 2007.
- E. García, P. J. Núñez, J. M. Chacón, M. A. Caminero, and S. Kamarthi, “Comparative study of geometric properties of unreinforced PLA and PLA-Graphene composite materials applied to additive manufacturing using FFF technology,” Polymer Testing, vol. 91, 2020, doi: https://doi.org/10.1016/j.polymertesting.2020.106860
- V. S. Vakharia, L. Kuentz, A. Salem, M. C. Halbig, J. A. Salem, and M. Singh, “Additive manufacturing and characterization of metal particulate reinforced polylactic acid (Pla) polymer composites,” Polymers, vol. 13, no. 20, 2021, doi: https://doi.org/10.3390/polym13203545
- P. L. Ringegni, A. Martínez, and D. P. Revisión, “Vibraciones Transmisibilidad Mecánica Y Mecanismos”, 2018. [Online]. Available: file:///D:/Downloads/Apunte%20-%20TRANSMISIBILIDAD%202024.pdf
- N. M. M. Maia, R. A. B. Almeida, A. P. V. Urgueira, R. P. C. Sampaio, “Damage detection and quantification using transmissibility,” Mechanical Systems and Signal Processing, vol. 25, no. 7, pp. 2475–2483, 2011, doi: https://doi.org/10.1016/j.ymssp.2011.04.002