Vol. 17 Núm. 1 (2018): Revista UIS Ingenierías
Artículos

Influencia de las condiciones de carga en la generación de úlceras por presión internas en amputados transfemorales

Carlos Mejía-Blandón
UNIVERSIDAD DE ANTIOQUIA
Liliana Bustamante-Goez
UNIVERSIDAD DE ANTIOQUIA
Junes Villarraga-Ossa
UNIVERSIDAD DE ANTIOQUIA

Publicado 2018-01-12

Palabras clave

  • Úlceras por presión,
  • úlceras por presión internas,
  • UP,
  • UPI,
  • amputado transfemoral,
  • elementos finitos,
  • EF,
  • biomecánica
  • ...Más
    Menos

Cómo citar

Mejía-Blandón, C., Bustamante-Goez, L., & Villarraga-Ossa, J. (2018). Influencia de las condiciones de carga en la generación de úlceras por presión internas en amputados transfemorales. Revista UIS Ingenierías, 17(1), 223–232. https://doi.org/10.18273/revuin.v17n1-2018022

Resumen

En esta investigación se realiza la modelación tridimensional del miembro residual de un amputado transfemoral que incluye la piel, el tejido graso, el músculo y el fémur residual. Se establecen las condiciones de carga para la fase de apoyo durante el ciclo de la marcha normal, la bipedestación y la marcha por escaleras de un amputado transfemoral de 88 kg y una estatura de 1.7 m. Se realizó un análisis de la incidencia de las condiciones de carga sobre los esfuerzos y deformaciones en el tejido muscular, para establecer su influencia sobre la generación de úlceras por presión internas en el miembro residual del amputado. Del análisis se obtuvo que el esfuerzo a compresión promedio más alto es cercano a 18.6 kPa y la deformación promedio más alta a compresión es de 56.8 %, esto sucede cuando se realiza marcha por escaleras o superficies inclinadas. La mayor concentración de esfuerzo y deformación se presenta en la zona distal del fémur residual en el tejido muscular.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Dan R. Berlowitz y Van B. Wilking, «Risk Factors for Pressure Sores, A Comparison of Cross-Sectional And Cohort-Derive Data», pp. 1043-1050, 1989.

D. Byrne y C. Salzberg, «Major risk factors for pressure ulcers in the spinal cord disabled: a literature review - Major-risk-factors-for-pressure-ulcers-in-the-spinal-cord-disabled-A-literature-review.pdf», pp. 255-263, 1996.

Leon Bennett y Bok Y. Lee, «Vertical shear existence in anaimal pressure threshold experiments», pp. 18-24, 1988.

Baldwin y Kathleen M., «Transcutaneous Oximetry and Skin Surface Temperature as Objective Measures of Pressuere Ulcer Risk», LWW, 2001.

E. Linder-Ganz, S. Engelberg, M. Scheinowitz, y A. Gefen, «Pressure-time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics», J. Biomech., vol. 39, n.o 14, pp. 2725-2732, 2006.

A. Gefen, B. van Nierop, D. L. Bader, y C. W. Oomens, «Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury», J. Biomech., vol. 41, n.o 9, pp. 2003-2012, 2008.

R. Á. Chaurand, L. R. P. León, y E. L. G. Muñoz, Dimensiones antropométricas de población latinoamericana. Universidad de Guadalajara, Centro Universitario de Arte, Arquitectura y Diseño, División de Tecnología y Procesos, Departamento de Producción y Desarrollo, Centro de Investigaciones en Ergonomía, 2001.

C. A. Mejía y J. A. Villarraga, «Influencia de las condiciones de carga, porcentaje de grasa del muñón y longitud del hueso residual en la generación de úlceras por presión en amputados transfemorales», Trabajo de fin de máster, Universidad de Antioquia, Medellín, 2017.

J. Díaz y O. Espinoza-Navarro, «Determinación del Porcentaje de Masa Grasa, según Mediciones de Perímetros Corporales, Peso y Talla: Un Estudio de Validación», Int. J. Morphol., vol. 30, n.o 4, pp. 1604-1610, dic. 2012.

«Predicting Pressure Distribution Between Transfemoral Prosthetic Socket and Residual Limb Using Finite Element Analysis - viewcontent.cgi».

R. Sopher, J. Nixon, C. Gorecki, y A. Gefen, «Exposure to internal muscle tissue loads under the ischial tuberosities during sitting is elevated at abnormally high or low body mass indices», J. Biomech., vol. 43, n.o 2, pp. 280-286, 2010.

W. C. C. Lee, M. Zhang, X. Jia, y J. T. M. Cheung, «Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket», Med. Eng. Phys., vol. 26, n.o 8, pp. 655-662, oct. 2004.

M. Zhang y A. F. Mak, «A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket--roles of interface friction and distal-end boundary conditions», IEEE Trans. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc., vol. 4, n.o 4, pp. 337-346, dic. 1996.

M. Zhang y C. Roberts, «Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket», Med. Eng. Phys., vol. 22, n.o 9, pp. 607-612, nov. 2000.

G. Boyer, J. Molimard, M. Ben Tkaya, H. Zahouani, M. Pericoi, y S. Avril, «Assessment of the in-plane biomechanical properties of human skin using a finite element model updating approach combined with an optical full-field measurement on a new tensile device», J. Mech. Behav. Biomed. Mater., vol. 27, pp. 273-282, nov. 2013.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, y J.-M. Bergheau, «A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo», Skin Res. Technol., vol. 14, n.o 2, pp. 152–164, 2008.

A. . Delalleau, G. . Josse, J.-M. . Lagarde, H. . Zahouani, J.-M. . Bergheau, y R. . Toscano, «A new stochastic inverse identification of the mechanical properties of human skin», Eng. Optim., vol. 43, n.o 1, pp. 61-75, 2011.

C. Flynn, A. Taberner, y P. Nielsen, «Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis», Biomech. Model. Mechanobiol., vol. 10, n.o 1, pp. 27-38, feb. 2011.

C. Flynn, A. Taberner, y P. Nielsen, «Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations», Ann. Biomed. Eng., vol. 39, n.o 7, pp. 1935-1946, jul. 2011.

R. B. . Groves, S. A. . Coulman, J. C. . Birchall, y S. L. . Evans, «Quantifying the mechanical properties of human skin to optimise future microneedle device design», Comput. Methods Biomech. Biomed. Engin., vol. 15, n.o 1, pp. 73-82, 2012.

F. M. Hendriks, D. Brokken, J. Van Eemeren, C. W. J. Oomens, F. P. T. Baaijens, y J. Horsten, «A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin», Skin Res. Technol., vol. 9, n.o 3, pp. 274–283, 2003.

F. M. Hendriks, D. Brokken, C. W. J. Oomens, y F. P. T. Baaijens, «Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography», Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin ISBS Int. Soc. Digit. Imaging Skin ISDIS Int. Soc. Skin Imaging ISSI, vol. 10, n.o 4, pp. 231-241, nov. 2004.

F. M. Hendriks, D. Brokken, C. W. J. Oomens, D. L. Bader, y F. P. T. Baaijens, «The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments», Med. Eng. Phys., vol. 28, n.o 3, pp. 259-266, abr. 2006.

F. Khatyr, C. Imberdis, P. Vescovo, D. Varchon, y J.-M. Lagarde, «Model of the viscoelastic behaviour of skin in vivo and study of anisotropy», Skin Res. Technol., vol. 10, n.o 2, pp. 96–103, 2004.

J. T. Iivarinen, R. K. Korhonen, P. Julkunen, y J. S. Jurvelin, «Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device», Med. Eng. Phys., vol. 33, n.o 10, pp. 1245-1253, dic. 2011.

N. F. A. Manan et al., «Determining hyperelastic parameters of human skin using 2D finite element modelling and simulation», presentado en 2012 IEEE Symposium on Humanities, Science and Engineering Research (SHUSER), 2012, pp. 805-809.

J. Mahmud, C. Holt, S. Evans, N. F. A. Manan, y M. Chizari, «A Parametric Study and Simulations in Quantifying Human Skin Hyperelastic Parameters», Procedia Eng., vol. 41, pp. 1580-1586, 2012.

H. V. Tran, F. Charleux, M. Rachik, A. Ehrlacher, y M. C. Ho Ba Tho, «In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques», Comput. Methods Biomech. Biomed. Engin., vol. 10, n.o 6, pp. 401-407, dic. 2007.

R. J. . Lapeer, P. D. . Gasson, y V. . Karri, «A hyperelastic finite-element model of human skin for interactive real-time surgical simulation», IEEE Trans. Biomed. Eng., vol. 58, n.o 4, pp. 1013-1022, 2011.

S. Portnoy, I. Siev-Ner, Z. Yizhar, A. Kristal, N. Shabshin, y A. Gefen, «Surgical and Morphological Factors that Affect Internal Mechanical Loads in Soft Tissues of the Transtibial Residuum», Ann. Biomed. Eng., vol. 37, n.o 12, pp. 2583-2605, sep. 2009.

R. O. Potts, D. A. Chrisman Jr., y E. M. Buras Jr., «The dynamic mechanical properties of human skin in vivo», J. Biomech., vol. 16, n.o 6, pp. 365-372, 1983.

L. Duchemin et al., «Prediction of mechanical properties of cortical bone by quantitative computed tomography», Med. Eng. Phys., vol. 30, n.o 3, pp. 321-328, abr. 2008.

S. Portnoy et al., «Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting», Ann. Biomed. Eng., vol. 35, n.o 1, pp. 120-135, ene. 2007.

S. Portnoy et al., «Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee», J. Biomech., vol. 41, n.o 9, pp. 1897-1909, 2008.

X. Jia, M. Zhang, X. Li, y W. C. C. Lee, «A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees», Clin. Biomech., vol. 20, n.o 6, pp. 630-635, jul. 2005.

S. Portnoy, I. Siev-Ner, N. Shabshin, A. Kristal, Z. Yizhar, y A. Gefen, «Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users», J. Biomech., vol. 42, n.o 16, pp. 2686-2693, dic. 2009.

M. J. Adams, B. J. Briscoe, y S. A. Johnson, «Friction and lubrication of human skin», Tribol. Lett., vol. 26, n.o 3, pp. 239-253, mar. 2007.

J. M. Sanders, J. M. Greve, S. B. Mitchell, y S. G. Zachariah, «Material properties of commonly-used interface materials and their static coefficients of friction with skin and socks».

Vanessa Restrepo, Junes Villarraga, y Jaime Velez, «Surface optimization of a socket for a transfemoral amputee that reduces the stresses varying the friction coefficient», vol. 1, 2014.

R. G. M. Breuls, C. V. C. Bouten, C. W. J. Oomens, D. L. Bader, y F. P. T. Baaijens, «A Theoretical Analysis of Damage Evolution in Skeletal Muscle Tissue With Reference to Pressure Ulcer Development», J. Biomech. Eng., vol. 125, n.o 6, pp. 902-909, dic. 2003.

E. Linder-Ganz y A. Gefen, «Stress Analyses Coupled With Damage Laws to Determine Biomechanical Risk Factors for Deep Tissue Injury During Sitting», J. Biomech. Eng., vol. 131, n.o 1, pp. 011003-011003-13, nov. 2008.