Artículos
Publicado 2019-04-26
Palabras clave
- arquitectura,
- coordinación,
- emergencia,
- auto-organización,
- sistemas multi-robots
Cómo citar
Gil Perez, A. E., Aguilar, J., Rivas, R., & Dapena, E. (2019). Coordinación emergente en sistemas multirobots. Revista UIS Ingenierías, 18(3), 75–86. https://doi.org/10.18273/revuin.v18n3-2019008
Resumen
En la naturaleza se encuentran sociedades de seres vivos que coordinan sus acciones de forma no centralizada. Por ejemplo, en las colonias de hormigas ocurren procesos emergentes, que combinan las acciones de los individuos en función de un objetivo común. En este trabajo, se describe una capa de gestión que facilita los procesos de coordinación emergente en los sistemas multirobots. Esta capa en particular permite la aparación de la emergencia y la autoorganización en el sistema. En conjunto con las capas de gestión individual y de gestión del conocimiento, manejan los procesos necesarios para el funcionamiento del sistema multirobot.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
[1] S. Zhang, Z. Lin, and G. Yan, “Local multi-robot coordination and experiments,” in 12th International Conference on Control, Automation, Robotics and Vision, ICARCV, 2012, pp. 913–918. doi: 10.1109/ICARCV.2012.6485279
[2] W. Ding, G. Yan, and Z. Lin, “Collective motions and formations under pursuit strategies on directed acyclic graphs,” Automatica, vol. 46, no. 1, pp. 174–181, 2010, doi: 10.1016/j.automatica.2009.10.025.
[3] M. Colby, J. J. Chung, and K. Tumer, “Implicit adaptive multi-robot coordination in dynamic environments,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 5168–5173. doi: 10.1109/IROS.2015.7354105
[4] H. Ahmadzadeh and E. Masehian, “Fuzzy coordination graphs and their application in multi-robot coordination under uncertainty,” in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 2014, pp. 345–350. doi: 10.1109/ICRoM.2014.6990925
[5] J. Santos, P. Costa, L. F. Rocha, A. P. Moreira, and G. Veiga, “Time enhanced A∗: Towards the development of a new approach for Multi-Robot Coordination,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 3314–3319. doi: 10.1109/ICIT.2015.7125589
[6] M. Lujak and A. Fernández, “Distributed multi-robot coordination combining semantics and real-time scheduling,” in 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), 2015, pp. 1–6. doi: 10.1109/CISTI.2015.7170599
[7] O. Cheikhrouhou, A. Koubâa, and H. Bennaceur, “Move and improve: A distributed multi-robot coordination approach for multiple depots multiple travelling salesmen problem,” in 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2014, pp. 28–35. doi: 10.1109/ICARSC.2014.6849758
[8] F. J. Mendiburu, M. R. A. Morais, and A. M. N. Lima, “Behavior coordination in multi-robot systems,” in 2016 IEEE International Conference on Automatica (ICA-ACCA), 2016, pp. 1–7. doi: 10.1109/ICA-ACCA.2016.7778506
[9] M. Cáp, P. Novák, M. Selecký, J. Faigl, and J. Vokffnek, “Asynchronous decentralized prioritized planning for coordination in multi-robot system,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3822–3829. doi: 10.1109/IROS.2013.6696903
[10] Y. Quiñonez, I. Tostado, and O. Sánchez, “Coordination Model for Multi-robot Systems Based on Cooperative Behaviors,” in 2013 12th Mexican International Conference on Artificial Intelligence, 2013, pp. 33–37. doi: 10.1109/MICAI.2013.46
[11] A. Gil, J. Aguilar, R. Rivas, E. Dapena, and K. Hernandez, “Architecture for Multi-robot Systems with Emergent Behavior,” in International Conference on Artificial Intelligence (ICAI), 2015.
[12] A. Gil, J. Aguilar, R. Rivas, E. Dapena, and K. Hernandez, “Diseño de una plataforma multi-robot de propósito general,” in Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas. Simulación y aplicaciones recientes para ciencia y tecnología, 2016.
[13] J. Aguilar, “Introducción a los Sistemas Emergentes,” Universidad de Los Andes, Mérida, Venezuela, 2014.
[14] C. R. Kube and E. Bonabeau, “Cooperative transport by ants and robots,” Rob. Auton. Syst., vol. 30, no. 1, pp. 85–101, 2000, doi: 10.1016/S0921-8890(99)00066-4
[15] Á. E. Gil Pérez, J. L. Aguilar Castro, R. D. J. Rivas Estrada, and E. Dapena González, “Módulo Conductual Inmerso En Una Arquitectura De Control Para Sistemas Multi-Robots,” Ing. al Día, vol. 2, no. 1, pp. 40–57, Jan. 2015.
[16] Y. Tohyama and H. Igarashi, “Cooperative transportation by multi-robots with selecting leader,” in 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 4179–4184. doi: 10.1109/IECON.2009.5415079
[17] S. Moon, D. Kwak, and H. J. Kim, “Cooperative control of differential wheeled mobile robots for box pushing problem,” in 2012 12th International Conference on Control, Automation and Systems, 2012, pp. 140–144.
[18] A. Ghosh, A. Ghosh, A. Konar, and R. Janarthanan, “Multi-robot cooperative box-pushing problem using multi-objective Particle Swarm Optimization technique,” in 2012 World Congress on Information and Communication Technologies, 2012, pp. 272–277. doi: 10.1109/WICT.2012.6409087
[19] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 26, no. 1, pp. 29–41, 1996, doi: 10.1109/3477.484436
[20] H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin, “Decentralized navigation of multiple agents based on ORCA and model predictive control,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3446–3451. doi: 10.1109/IROS.2017.8206184
[21] E. Sahin et al., “SWARM-BOT: pattern formation in a swarm of self-assembling mobile robots,” in IEEE International Conference on Systems, Man and Cybernetics, 2002, vol. 4. doi: 10.1109/ICSMC.2002.1173259
[22] S. Sang-Wook, Y. Hyun-Chang, and S. Kwee-Bo, “Behavior learning and evolution of swarm robot system for cooperative behavior,” in 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009, pp. 673–678. doi: 10.1109/AIM.2009.5229933
[23] P. Nebot and E. Cervera, “La arquitectura Acromovi: Una arquitectura para tareas cooperativas de robots móviles,” in Una Perspectiva de la Inteligencia Artificial en su 50 Aniversario, Albacete: Gráficas Quintanilla, 2006, pp. 365–376.
[24] F. de la Rosa and M. E. Jimenez, “Simulation of Multi-robot Architectures in Mobile Robotics,” in 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2009, pp. 199–203. doi: 10.1109/CERMA.2009.57.
[25] J. H. Posselius et al., “Control architecture for multi-robot system,” U.S. Patent No. 9,527,211, 27-Dec-2016.
[26] J. Stephan, J. Fink, V. Kumar, and A. Ribeiro, “Hybrid architecture for communication-aware multi-robot systems,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 5269–5276. doi: 10.1109/ICRA.2016.7487737
[27] C. Hu, C. Hu, D. He, and Q. Gu, “A new ROS-based hybrid architecture for heterogeneous multi-robot systems,” in The 27th Chinese Control and Decision Conference (2015 CCDC), 2015, pp. 4721–4726. doi: 10.1109/CCDC.2015.7162759
[28] Y. Cai, Z. Tang, Y. Ding, and B. Qian, “Theory and application of multi-robot service-oriented architecture,” IEEE/CAA J. Autom. Sin., vol. 3, no. 1, pp. 15–25, 2016, doi: 10.1109/JAS.2016.7373758.
[29] J. Aguilar, M. Cerrada, G. Mousalli, F. Rivas, and F. Hidrobo, “A Multiagent Model for Intelligent Distributed Control Systems BT - Knowledge-Based Intelligent Information and Engineering Systems,” in International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, 2005, pp. 191–197.
[2] W. Ding, G. Yan, and Z. Lin, “Collective motions and formations under pursuit strategies on directed acyclic graphs,” Automatica, vol. 46, no. 1, pp. 174–181, 2010, doi: 10.1016/j.automatica.2009.10.025.
[3] M. Colby, J. J. Chung, and K. Tumer, “Implicit adaptive multi-robot coordination in dynamic environments,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 5168–5173. doi: 10.1109/IROS.2015.7354105
[4] H. Ahmadzadeh and E. Masehian, “Fuzzy coordination graphs and their application in multi-robot coordination under uncertainty,” in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 2014, pp. 345–350. doi: 10.1109/ICRoM.2014.6990925
[5] J. Santos, P. Costa, L. F. Rocha, A. P. Moreira, and G. Veiga, “Time enhanced A∗: Towards the development of a new approach for Multi-Robot Coordination,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 3314–3319. doi: 10.1109/ICIT.2015.7125589
[6] M. Lujak and A. Fernández, “Distributed multi-robot coordination combining semantics and real-time scheduling,” in 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), 2015, pp. 1–6. doi: 10.1109/CISTI.2015.7170599
[7] O. Cheikhrouhou, A. Koubâa, and H. Bennaceur, “Move and improve: A distributed multi-robot coordination approach for multiple depots multiple travelling salesmen problem,” in 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2014, pp. 28–35. doi: 10.1109/ICARSC.2014.6849758
[8] F. J. Mendiburu, M. R. A. Morais, and A. M. N. Lima, “Behavior coordination in multi-robot systems,” in 2016 IEEE International Conference on Automatica (ICA-ACCA), 2016, pp. 1–7. doi: 10.1109/ICA-ACCA.2016.7778506
[9] M. Cáp, P. Novák, M. Selecký, J. Faigl, and J. Vokffnek, “Asynchronous decentralized prioritized planning for coordination in multi-robot system,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3822–3829. doi: 10.1109/IROS.2013.6696903
[10] Y. Quiñonez, I. Tostado, and O. Sánchez, “Coordination Model for Multi-robot Systems Based on Cooperative Behaviors,” in 2013 12th Mexican International Conference on Artificial Intelligence, 2013, pp. 33–37. doi: 10.1109/MICAI.2013.46
[11] A. Gil, J. Aguilar, R. Rivas, E. Dapena, and K. Hernandez, “Architecture for Multi-robot Systems with Emergent Behavior,” in International Conference on Artificial Intelligence (ICAI), 2015.
[12] A. Gil, J. Aguilar, R. Rivas, E. Dapena, and K. Hernandez, “Diseño de una plataforma multi-robot de propósito general,” in Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas. Simulación y aplicaciones recientes para ciencia y tecnología, 2016.
[13] J. Aguilar, “Introducción a los Sistemas Emergentes,” Universidad de Los Andes, Mérida, Venezuela, 2014.
[14] C. R. Kube and E. Bonabeau, “Cooperative transport by ants and robots,” Rob. Auton. Syst., vol. 30, no. 1, pp. 85–101, 2000, doi: 10.1016/S0921-8890(99)00066-4
[15] Á. E. Gil Pérez, J. L. Aguilar Castro, R. D. J. Rivas Estrada, and E. Dapena González, “Módulo Conductual Inmerso En Una Arquitectura De Control Para Sistemas Multi-Robots,” Ing. al Día, vol. 2, no. 1, pp. 40–57, Jan. 2015.
[16] Y. Tohyama and H. Igarashi, “Cooperative transportation by multi-robots with selecting leader,” in 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 4179–4184. doi: 10.1109/IECON.2009.5415079
[17] S. Moon, D. Kwak, and H. J. Kim, “Cooperative control of differential wheeled mobile robots for box pushing problem,” in 2012 12th International Conference on Control, Automation and Systems, 2012, pp. 140–144.
[18] A. Ghosh, A. Ghosh, A. Konar, and R. Janarthanan, “Multi-robot cooperative box-pushing problem using multi-objective Particle Swarm Optimization technique,” in 2012 World Congress on Information and Communication Technologies, 2012, pp. 272–277. doi: 10.1109/WICT.2012.6409087
[19] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 26, no. 1, pp. 29–41, 1996, doi: 10.1109/3477.484436
[20] H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin, “Decentralized navigation of multiple agents based on ORCA and model predictive control,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3446–3451. doi: 10.1109/IROS.2017.8206184
[21] E. Sahin et al., “SWARM-BOT: pattern formation in a swarm of self-assembling mobile robots,” in IEEE International Conference on Systems, Man and Cybernetics, 2002, vol. 4. doi: 10.1109/ICSMC.2002.1173259
[22] S. Sang-Wook, Y. Hyun-Chang, and S. Kwee-Bo, “Behavior learning and evolution of swarm robot system for cooperative behavior,” in 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009, pp. 673–678. doi: 10.1109/AIM.2009.5229933
[23] P. Nebot and E. Cervera, “La arquitectura Acromovi: Una arquitectura para tareas cooperativas de robots móviles,” in Una Perspectiva de la Inteligencia Artificial en su 50 Aniversario, Albacete: Gráficas Quintanilla, 2006, pp. 365–376.
[24] F. de la Rosa and M. E. Jimenez, “Simulation of Multi-robot Architectures in Mobile Robotics,” in 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2009, pp. 199–203. doi: 10.1109/CERMA.2009.57.
[25] J. H. Posselius et al., “Control architecture for multi-robot system,” U.S. Patent No. 9,527,211, 27-Dec-2016.
[26] J. Stephan, J. Fink, V. Kumar, and A. Ribeiro, “Hybrid architecture for communication-aware multi-robot systems,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 5269–5276. doi: 10.1109/ICRA.2016.7487737
[27] C. Hu, C. Hu, D. He, and Q. Gu, “A new ROS-based hybrid architecture for heterogeneous multi-robot systems,” in The 27th Chinese Control and Decision Conference (2015 CCDC), 2015, pp. 4721–4726. doi: 10.1109/CCDC.2015.7162759
[28] Y. Cai, Z. Tang, Y. Ding, and B. Qian, “Theory and application of multi-robot service-oriented architecture,” IEEE/CAA J. Autom. Sin., vol. 3, no. 1, pp. 15–25, 2016, doi: 10.1109/JAS.2016.7373758.
[29] J. Aguilar, M. Cerrada, G. Mousalli, F. Rivas, and F. Hidrobo, “A Multiagent Model for Intelligent Distributed Control Systems BT - Knowledge-Based Intelligent Information and Engineering Systems,” in International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, 2005, pp. 191–197.