Estrategias de eficiencia energética en vehículos livianos del transporte por carretera en Colombia

  • Juan Castillo Universidad Tecnológica de Pereira
  • Álvaro Restrepo Universidad Tecnológica de Pereira
  • Juan Tibaquirá Universidad Tecnológica de Pereira
  • Luis Quirama Universidad Tecnológica de Pereira

Resumen

El sector transporte por carretera en Colombia es el responsable del 44% del consumo de energéticos. Igualmente, se clasifica como el principal consumidor de los combustibles derivados del petróleo y el sector productivo con mayores pérdidas de energía. En este estudio, se presentan estrategias tecnológicas y operacionales que mejoran el rendimiento de los vehículos livianos. Además, se identifican metodologías encaminadas a la medición del consumo energético y emisiones de los vehículos y se evalúa la conducción eficiente como estrategia de eficiencia energética en Colombia. Como resultado, se implementó la metodología de pruebas basada en la Regulación CFR 40 de los Estados Unidos y COPANT en un laboratorio del país y se evaluó mediante el aseguramiento metrológico el consumo de combustible en un vehículo liviano de combustión interna. Adicionalmente, empleando conducción eficiente se identificó un aumento en el rendimiento del 15% y 20% en pruebas de laboratorio y ruta respectivamente.

Palabras clave: eficiencia, metodología, energéticos, rendimiento, consumo

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] K. Ben Abdallah, M. Belloumi, and D. De Wolf, “International comparisons of energy and environmental efficiency in the road transport sector,” Energy, vol. 93, no. 2, pp. 2087–2101, 2015. doi: 10.1016/j.energy.2015.10.090.

[2] R. K. Bose and V. Srinivasachary, “Policies to reduce energy use and environmental emissions in the transport sector: A case of Delhi city,” Energy Policy, vol. 25, no. 14–15, pp. 1137–1150, 1997. doi: 10.1016/S0301-4215(97)00106-7.

[3] L. Michaelis and O. Davidson, “GHG mitigation in the transport sector,” Energy Policy, vol. 24, no. 10–11, pp. 969–984, 1996. doi: 10.1016/S0301-4215(96)80361-2.

[4] Á. I. Cadena, O. V. González, O. Báez, UPME, and MinMinas, “Eficiencia Energetica En Colombia Estrategias y metas,” Bogotá, 2014. [En línea]. Disponible en: https://docplayer.es/13554352-Eficiencia-energetica-en-colombia-estrategias-y-metas.html

[5] Agencia Chilena de Eficiencia Energética and W. Vidal Geisel, “Guía de Conducción Eficiente,” 2013. [En línea]. Disponible en: http://conduccioneficiente.cl/conduccion-eficiente/wp-content/uploads/2016/07/Guia_particulares.pdf

[6] C. Daraio, M. Diana, F. Di Costa, C. Leporelli, G. Matteucci, and A. Nastasi, “Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research,” Eur. J. Oper. Res., vol. 248, no. 1, pp. 1–20, 2016. doi: 10.1016/j.ejor.2015.05.059.

[7] X. Yan and R. J. Crookes, “Reduction potentials of energy demand and GHG emissions in China’s road transport sector,” Energy Policy, vol. 37, no. 2, pp. 658–668, 2009. doi: 10.1016/j.enpol.2008.10.008.

[8] G. R. Timilsina and A. Shrestha, “Transport sector CO2 emissions growth in Asia: Underlying factors and policy options,” Energy Policy, vol. 37, no. 11, pp. 4523–4539, 2009. doi: 10.1016/j.enpol.2009.06.009.

[9] P. Maniatopoulos, J. Andrews, and B. Shabani, “Towards a sustainable strategy for road transportation in Australia: The potential contribution of hydrogen,” Renew. Sustain. Energy Rev., vol. 52, pp. 24–34, 2015. doi: 10.1016/j.rser.2015.07.088.

[10] CTS Embarq México, “Documento base para la elaboración de la Estrategia de Transición para promover el uso de Tecnologías y Combustibles más Limpios” en el tema de ahorro de energía en transporte,” 2015.

[11] J. Barboza Mariano, “Eficiencia Energética en Brasil,” Montevideo, Uruguay, 2012.

[12] C. Gavilán Labra, “Etiquetado vehicular en Chile y otras medidas de eficiencia energtica para vehículos particulares,” 2013.

[13] J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative,” Energy Policy, vol. 38, no. 2, pp. 762–769, 2010. doi: 10.1016/j.enpol.2009.10.021.

[14] J. Van Mierlo, G. Maggetto, E. Van de Burgwal, and R. Gense, “Driving style and traffic measures-influence on vehicle emissions and fuel consumption,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 218, no. 1, pp. 43–50, Jan. 2004. doi: 10.1243/095440704322829155..

[15] S.-H. Ho, Y.-D. Wong, and V. W.-C. Chang, “What can eco-driving do for sustainable road transport? Perspectives from a city (Singapore) eco-driving programme,” Sustain. Cities Soc., vol. 14, pp. 82–88, 2015. doi: 10.1016/j.scs.2014.08.002.

[16] M. Andrejić, N. Bojović, and M. Kilibarda, “A framework for measuring transport efficiency in distribution centers,” Transp. Policy, vol. 45, pp. 99–106, 2016. doi: 10.1016/j.tranpol.2015.09.013.

[17] J. Wu, Q. Zhu, J. Chu, H. Liu, and L. Liang, “Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach,” Transp. Res. Part D Transp. Environ., vol. 48, pp. 460–472, 2016. doi: 10.1016/j.trd.2015.08.001.

[18] F. Orsi, M. Muratori, M. Rocco, E. Colombo, and G. Rizzoni, “A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost,” Appl. Energy, vol. 169, pp. 197–209, 2016. doi: 10.1016/j.apenergy.2016.02.039.

[19] J. Pongthanaisawan and C. Sorapipatana, “Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options,” Appl. Energy, vol. 101, pp. 288–298, 2013. doi: 10.1016/j.apenergy.2011.09.026.

[20] M. Ehsani, A. Ahmadi, and D. Fadai, “Modeling of vehicle fuel consumption and carbon dioxide emission in road transport,” Renew. Sustain. Energy Rev., vol. 53, pp. 1638–1648, 2016. doi: 10.1016/j.rser.2015.08.062.

[21] G. Helfand et al., “Searching for hidden costs: A technology-based approach to the energy efficiency gap in light-duty vehicles,” Energy Policy, vol. 98, pp. 590–606, 2016. doi: 10.1016/j.enpol.2016.09.014.

[22] R. A. Simmons, G. M. Shaver, W. E. Tyner, and S. V Garimella, “A benefit-cost assessment of new vehicle technologies and fuel economy in the U.S. market,” Appl. Energy, vol. 157, pp. 940–952, 2015. doi: 10.1016/j.apenergy.2015.01.068.

[23] S. Skippon, S. Veeraraghavan, H. Ma, P. Gadd, and N. Tait, “Combining technology development and behaviour change to meet CO2 cumulative emission budgets for road transport: Case studies for the USA and Europe,” Transp. Res. Part A Policy Pract., vol. 46, no. 9, pp. 1405–1423, 2012. doi: 10.1016/j.tra.2012.05.021.

[24] V. Y. Ministerio De Ambiente And Desarrollo Territorial de Colombia, Resolución Número 910. Colombia: http://www.bogotaturismo.gov.co/sites/intranet.bogotaturismo.gov.co/files/RESOLUCI%C3%93N%20910%20DE%202008.pdf, 2008.

[25] Asociación Colombiana de Vehículos Automotores- ANDEMOS, “Informe Vehículos Diciembre,” 2017.

[26] Asociación Colombiana de Vehículos Automotores- ANDEMOS, “Informe Vehículos Junio,” 2018.

[27] Grupo de Estudios Económicos and Superintendencia de Industria y Comercio, “Estudios de Mercado Estudio del Sector Automotor en Colombia,” 2012 [En línea]. Disponible en: http://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Economicos/Estudios_Economicos/Estudios_Mercado/Estudiosobreelsectorautomotor.pdf

[28] BBVA-Research, “Situación Automotriz 2018 Colombia,” 2018 [En línea]. Disponible en: https://webcache.googleusercontent.com/search?q=cache:wsHOtfFJTTcJ:https://www.bbvaresearch.com/wp-content/uploads/2018/03/SituacionAutomotriz2018.pdf+&cd=3&hl=es&ct=clnk&gl=co

[29] DELPHI, “Worldwide Emissions Standards Passenger Cars and Light Duty,” 2016.

[30] ABNT - Associação Brasileira de Normas Técnicas, Veículos rodoviários automotores leves - Medição do consumo de combustível - Método de ensaio. abntcatalogo.com.br, 2017, p. 15.

[31] ABNT - Associação Brasileira de Normas Técnicas, Veículos rodoviários automotores leves — Determinação de hidrocarbonetos, monóxido de carbono, óxidos de nitrogênio, dióxido de carbono e material particulado no gás de escapamento. 2012, p. 49.

[32] BIPM et al., Evaluation of measurement data-Supplement 1 to the “Guide to the expression of uncertainty in measurement”-propagation of distributions using a Monte Carlo Method, 1st ed. JCGM, 2008.

[33] ANDI and FENALCO, “Informe Del Sector Automotor A Septiembre De 2015,” 2015.

[34] United States Department of Energy and Office of Energy Efficiency and Renewable Energy, “Used Car Fuel Economy Label.” [Online]. Available: https://www.fueleconomy.gov/feg/UsedCarLabel.jsp. [Accessed: 30-Jul-2018].

[35] S. Birrell, J. Taylor, A. McGordon, J. Son, and P. Jennings, “Analysis of three independent real-world driving studies: A data driven and expert analysis approach to determining parameters affecting fuel economy,” Transp. Res. Part D Transp. Environ., vol. 33, pp. 74–86, 2014. doi: 10.1016/j.trd.2014.08.021.

[36] H. Kato, R. Ando, Y. Kondo, T. Suzuki, K. Matsuhashi, and S. Kobayashi, “Comparative measurements of the eco-driving effect between electric and internal combustion engine vehicles,” in 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014, 2014, pp. 1–5. doi: 10.1109/EVS.2013.6914843

[37] M. Sivak and B. Schoettle, “Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy,” Transp. Policy, vol. 22, pp. 96–99, 2012. doi: 10.1016/j.tranpol.2012.05.010.

[38] V. Basaric, M. Jambrovic, M. Milicic, T. Savković, D. Basaric, and V. Bogdanović, “Positive effects of eco-driving in public transport: A case study of Novi Sad,” Therm. Sci., vol. 21, p. 160, Jan. 2016. doi: 10.2298/TSCI150219160B.

[39] M. Rutty, L. Matthews, J. Andrey, and T. Del Matto, “Eco-driver training within the City of Calgary’s municipal fleet: Monitoring the impact,” Transp. Res. Part D Transp. Environ., vol. 24, pp. 44–51, 2013. doi: 10.1016/j.trd.2013.05.006.

[40] IDAE, “Manual de conducción eficiente para conductores de vehículos industriales,” Madrid, 2006.

[41] G. Ombach and J. Junak, “Weight and efficiency optimization of auxiliary drives used in automobile,” in The XIX International Conference on Electrical Machines-ICEM 2010, 2010, pp. 1–6.

[42] S. Kobayashi, S. Plotkin, and S. K. Ribeiro, “Energy efficiency technologies for road vehicles,” Energy Effic., vol. 2, no. 2, pp. 125–137, 2009. doi: 10.1007/s12053-008-9037-3.

[43] J. King, The King review of low-carbon cars, Part I: The potential for CO2 reduction. London: King, 2007.

[44] G. Fontaras and Z. Samaras, “On the way to 130gCO2/km—Estimating the future characteristics of the average European passenger car,” Energy Policy, vol. 38, no. 4, pp. 1826–1833, 2010. doi: 10.1016/j.enpol.2009.11.059.

[45] J.-C. Pandazis and A. Winder, “Study of Intelligent Transport Systems for reducing CO 2 emissions for passenger cars,” 2015.

[46] European Conference Of Ministers Of Transport Ecmt, “making cars more fuel efficient,” 2005.
Publicado
2019-05-03