Vol. 18 Núm. 4 (2019): Revista UIS Ingenierías
Artículos

Fibras de bagazo de caña de azúcar como agentes de refuerzo para compuestos naturales: descripción y aplicaciones de compuestos de polímeros

María Fernanda Maradei-García
Universidad Industrial de Santander
German Diaz-Ramirez
Universidad Industrial de Santander
German Vargas- Linares
Universidad Industrial de Santander

Publicado 2019-08-09

Palabras clave

  • Bagazo de caña de azúcar,
  • estado del arte,
  • materiales compuestos

Cómo citar

Maradei-García, M. F., Diaz-Ramirez, G., & Vargas- Linares, G. (2019). Fibras de bagazo de caña de azúcar como agentes de refuerzo para compuestos naturales: descripción y aplicaciones de compuestos de polímeros. Revista UIS Ingenierías, 18(4), 117–130. https://doi.org/10.18273/revuin.v18n4-2019011

Resumen

Algunos recursos naturales, considerados como residuos, pueden utilizarse para la fabricación de muchos productos con propiedades sostenibles mejoradas, como el bagazo celulósico. Se realizó una revisión para determinar el estado de la técnica acerca de la estructura, las propiedades y las aplicaciones de las fibras naturales en el refuerzo de compuestos poliméricos, con un enfoque acerca de las fibras de bagazo de caña de azúcar La revisión se realizó en diferentes bases de datos científicas, en más de 50 trabajos. Se obtuvo que, de las fibras vegetales, el bagazo de caña de azúcar emerge como un recurso renovable notable, debido a que posee propiedades ventajosas y existe una gran cantidad de este disponible en todo el mundo, no obstante, requiere tratamientos físicos y químicos adecuados para lograr una buena interacción con las matrices poliméricas. También la geometría y el contenido de fibra pueden influir en el rendimiento como refuerzos en materiales compuestos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] L. Mwaikambo, “Review of the history, properties and application of plant fibres,” African J. Sci. Technol., vol. 7, no. 2, pp. 120–133, Jan. 2006.

[2] S. C. R. Furtado, A. J. Silva, C. Alves, L. Reis, M. Freitas, and P. Ferrão, “CHAPTER 6 Natural Fibre Composites: Automotive Applications,” in Natural Polymers: Volume 1: Composites, vol. 1, The Royal Society of Chemistry, 2012, pp. 118–139. doi: 10.1039/9781849735193-00118.

[3] T. Gurunathan, S. Mohanty, and S. K. Nayak, “A review of the recent developments in biocomposites based on natural fibres and their application perspectives,” Compos. Part A Appl. Sci. Manuf., vol. 77, pp. 1–25, 2015. doi: 10.1016/j.compositesa.2015.06.007.

[4] M. R. Sanjay, M. R. Arpitha, G. R. Naik, L. L. Gopalakrishna, and K. Yogesha, “Applications of Natural Fibers and Its Composites: An Overview,” Nat. Resour., vol. 7, pp. 108–114, 2016. doi: 10.4236/nr.2016.73011.

[5] V. Favier, G. R. Canova, J. Y. Cavaillé, H. Chanzy, A. Dufresne, and C. Gauthier, “Nanocomposite materials from latex and cellulose whiskers,” Polym. Adv. Technol., vol. 6, no. 5, pp. 351–355, May 1995. doi: 10.1002/pat.1995.220060514.

[6] H. Cheung, M. Ho, K. Lau, F. Cardona, and D. Hui, “Natural fibre-reinforced composites for bioengineering and environmental engineering applications,” Compos. Part B Eng., vol. 40, no. 7, pp. 655–663, 2009. doi: 10.1016/j.compositesb.2009.04.014.

[7] R. Guzman, B. Ramón, and S. Gómez, “Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers,” Rev. UIS Ing., vol. 17, no. 1, pp. 43–50, 2018. doi: 10.18273/revuin.v17n1-2018004.

[8] P. M. Visakh, S. Thomas, and L. A. Pothan, “Fully Green Bionanocomposites,” in A handbook of applied biopolymer technology : synthesis, degradation and applications, RSC Publishing, 2011, p. 482.

[9] M. P. M. Dicker, P. F. Duckworth, A. B. Baker, G. Francois, M. K. Hazzard, and P. M. Weaver, “Green composites: A review of material attributes and complementary applications,” Compos. Part A Appl. Sci. Manuf., vol. 56, pp. 280–289, 2014. doi: 10.1016/j.compositesa.2013.10.014.

[10] D. Klemm et al., “Nanocelluloses: A New Family of Nature-Based Materials,” Angew. Chemie Int. Ed., vol. 50, no. 24, pp. 5438–5466, Jun. 2011. doi: 10.1002/anie.201001273.

[11] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, “Cellulose nanomaterials review: structure, properties and nanocomposites,” Chem. Soc. Rev., vol. 40, no. 7, pp. 3941–3994, 2011. doi: 10.1039/C0CS00108B.

[12] J.-F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, “Helicoidal self-ordering of cellulose microfibrils in aqueous suspension,” Int. J. Biol. Macromol., vol. 14, no. 3, pp. 170–172, 1992. doi: 10.1016/S0141-8130(05)80008-X.

[13] A. Bismarck et al., “Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers,” Green Chem., vol. 3, no. 2, pp. 100–107, 2001. doi: 10.1039/B100365H.

[14] L. G. Carr, D. F. Parra, P. Ponce, A. B. Lugão, and P. M. Buchler, “Influence of Fibers on the Mechanical Properties of Cassava Starch Foams,” J. Polym. Environ., vol. 14, no. 2, pp. 179–183, 2006. doi: 10.1007/s10924-006-0008-5.

[15] V. K. Thakur, M. K. Thakur, R. K. Gupta, R. Prasanth, and M. R. Kessler, “Green composites: an introduction,” in Green Composites from Natural Resources, CRC Press, 2013. pp. 14–23.

[16] F. P. La Mantia and M. Morreale, “Green composites: A brief review,” Compos. Part A Appl. Sci. Manuf., vol. 42, no. 6, pp. 579–588, 2011. doi: 10.1016/j.compositesa.2011.01.017.

[17] T. Väisänen, O. Das, and L. Tomppo, “A review on new bio-based constituents for natural fiber-polymer composites,” J. Clean. Prod., vol. 149, pp. 582–596, 2017. doi: 10.1016/j.jclepro.2017.02.132.

[18] O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Prog. Polym. Sci., vol. 37, no. 11, pp. 1552–1596, 2012. doi: 10.1016/j.progpolymsci.2012.04.003.

[19] K. Oksman et al., “Review of the recent developments in cellulose nanocomposite processing,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 2–18, 2016. doi: 10.1016/j.compositesa.2015.10.041.

[20] G. Song, F. Kimura, T. Kimura, and G. Piao, “Orientational Distribution of Cellulose Nanocrystals in a Cellulose Whisker As Studied by Diamagnetic Anisotropy,” Macromolecules, vol. 46, no. 22, pp. 8957–8963, Nov. 2013. doi: 10.1021/ma401788c.

[21] K. Gokul, T. R. Prabhu, and T. Rajasekaran, “Processing and Evaluation of Mechanical Properties of Sugarcane Fiber Reinforced Natural Composites,” Trans. Indian Inst. Met., vol. 70, no. 10, pp. 2537–2546, 2017. doi: 10.1007/s12666-017-1116-8.

[22] K.-Y. Lee, Y. Aitomäki, L. A. Berglund, K. Oksman, and A. Bismarck, “On the use of nanocellulose as reinforcement in polymer matrix composites,” Compos. Sci. Technol., vol. 105, pp. 15–27, 2014. doi: 10.1016/j.compscitech.2014.08.032.

[23] J. Sahari and S. M. Sapuan, “Natural Fibre Reinforced Biodegradable Polymer Composites,” Rev.Adv. Mater. Sci, vol. 30, no. 2, pp. 166–174, 2011.

[24] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A Review on Natural Fiber Reinforced Polymer Composite and Its Applications,” Int. J. Polym. Sci., vol. 2015, 2015. doi: 10.1155/2015/243947.

[25] Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev., vol. 110, no. 6, pp. 3479–3500, Jun. 2010. doi: 10.1021/cr900339w.

[26] O. Nechyporchuk, M. N. Belgacem, and J. Bras, “Production of cellulose nanofibrils: A review of recent advances,” Ind. Crops Prod., vol. 93, pp. 2–25, 2016. doi: 10.1016/j.indcrop.2016.02.016.

[27] M. Prakash Menon, R. Selvakumar, P. Suresh kumar, and S. Ramakrishna, “Extraction and modification of cellulose nanofibers derived from biomass for environmental application,” RSC Adv., vol. 7, no. 68, pp. 42750–42773, 2017. doi: 10.1039/C7RA06713E.

[28] F. A. dos Santos, G. C. V Iulianelli, and M. I. B. Tavares, “Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix,” Polym. Test., vol. 61, pp. 280–288, 2017. doi: 10.1016/j.polymertesting.2017.05.028.

[29] S. Hooshmand, Y. Aitomäki, L. Berglund, A. P. Mathew, and K. Oksman, “Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments,” Compos. Sci. Technol., vol. 150, pp. 79–86, 2017. doi: 10.1016/j.compscitech.2017.07.011.

[30] A. Dufresne, “Cellulose nanomaterial reinforced polymer nanocomposites,” Curr. Opin. Colloid Interface Sci., vol. 29, pp. 1–8, 2017. doi: 10.1016/j.cocis.2017.01.004.

[31] C. Zhang et al., “Hierarchical porous structures in cellulose: NMR relaxometry approach,” Polymer (Guildf)., vol. 98, pp. 237–243, 2016. doi: 10.1016/j.polymer.2016.06.036.

[32] N. Nordgren, H. Lönnberg, A. Hult, E. Malmström, and M. W. Rutland, “Adhesion Dynamics for Cellulose Nanocomposites,” ACS Appl. Mater. Interfaces, vol. 1, no. 10, pp. 2098–2103, Oct. 2009. doi: 10.1021/am900381t.

[33] H. Kargarzadeh et al., “Recent developments on nanocellulose reinforced polymer nanocomposites: A review,” Polymer (Guildf)., vol. 132, pp. 368–393, 2017. doi: 10.1016/j.polymer.2017.09.043.

[34] Y. Pan et al., “Preparation and adsorption behaviour of cationic nanoparticles for sugarcane fibre modification,” RSC Adv., vol. 6, no. 40, pp. 33554–33560, 2016. doi: 10.1039/C6RA02752K.

[35] H. Hajiha and M. Sain, “17 - The use of sugarcane bagasse fibres as reinforcements in composites,” in Biofiber Reinforcements in Composite Materials, O. Faruk and M. B. T.-B. R. in C. M. Sain, Eds. Woodhead Publishing, 2015, pp. 525–549. doi: 10.1533/9781782421276.4.525.

[36] Y. R. Loh, D. Sujan, M. E. Rahman, and C. A. Das, “Sugarcane bagasse—The future composite material: A literature review,” Resour. Conserv. Recycl., vol. 75, pp. 14–22, 2013. doi: 10.1016/j.resconrec.2013.03.002.

[37] N. S. Salas et al., “Synthesis and Reinforcement of Thermostable Polymers Using Renewable Resources,” J. Renew. Mater., vol. 5, no. 3, pp. 313–322, Jul. 2017. doi: 10.7569/JRM.2017.634122.

[38] M. da S. Ozório, E. A. P. dos Reis, S. R. Teixeira, F. S. Bellucci, and A. E. Job, “Sugarcane bagasse ash as a reinforcing filler in thermoplastic elastomers: Structural and mechanical characterizations,” J. Appl. Polym. Sci., vol. 132, no. 7, Feb. 2015. doi:10.1002/app.41466.

[39] R. Muthuraj, M. Misra, F. Defersha, and A. K. Mohanty, “Influence of processing parameters on the impact strength of biocomposites: A statistical approach,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 120–129, 2016. doi: 10.1016/j.compositesa.2015.09.003.

[40] R. Muthuraj, M. Misra, F. Defersha, and A. K. Mohanty, “Influence of processing parameters on the impact strength of biocomposites: A statistical approach,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 120–129, 2016. doi: 10.1016/j.compositesa.2015.09.003.

[41] S. K. Mazumdar, Composites manufacturing : materials, product, and process engineering. CRC Press, 2002.

[42] J. I. Preet Singh, V. Dhawan, S. Singh, and K. Jangid, “Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites,” Mater. Today Proc., vol. 4, no. 2, Part A, pp. 2793–2799, 2017. doi: 10.1016/j.matpr.2017.02.158.

[43] A. Ashori, S. Sheshmani, and F. Farhani, “Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes,” Carbohydr. Polym., vol. 92, no. 1, pp. 865–871, 2013. doi: 10.1016/j.carbpol.2012.10.010.

[44] D. R. Mulinari, T. G. Cruz, M. O. H. Cioffi, H. J. C. Voorwald, M. L. C. P. Da Silva, and G. J. M. Rocha, “Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride,” Carbohydr. Res., vol. 345, no. 13, pp. 1865–1871, 2010. doi: 10.1016/j.carres.2010.05.011.

[45] J. O. Agunsoye and V. S. Aigbodion, “Bagasse filled recycled polyethylene bio-composites: Morphological and mechanical properties study,” Results Phys., vol. 3, pp. 187–194, 2013. doi: 10.1016/j.rinp.2013.09.003.

[46] M. J. M. Ridzuan, M. S. A. Majid, M. Afendi, M. N. Mazlee, and A. G. Gibson, “Thermal behaviour and dynamic mechanical analysis of Pennisetum purpureum/glass-reinforced epoxy hybrid composites,” Compos. Struct., vol. 152, pp. 850–859, 2016. doi: 10.1016/j.compstruct.2016.06.026.

[47] D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. da Silva, T. G. da Cruz, and C. Saron, “Sugarcane bagasse cellulose/HDPE composites obtained by extrusion,” Compos. Sci. Technol., vol. 69, no. 2, pp. 214–219, 2009. doi: 10.1016/j.compscitech.2008.10.006.

[48] S. A. S. Goulart, T. A. Oliveira, A. Teixeira, P. C. Miléo, and D. R. Mulinari, “Mechanical Behaviour of Polypropylene Reinforced Palm Fibers Composites,” Procedia Eng., vol. 10, pp. 2034–2039, 2011. doi: 10.1016/j.proeng.2011.04.337.

[49] S. N. A. Safri, M. T. H. Sultan, M. Jawaid, and K. Jayakrishna, “Impact behaviour of hybrid composites for structural applications: A review,” Compos. Part B Eng., vol. 133, pp. 112–121, 2018. doi: 10.1016/j.compositesb.2017.09.008.

[50] M. Sood and G. Dwivedi, “Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review,” Egypt. J. Pet., vol. 27, no. 4, pp. 775–783, 2018. doi: 10.1016/j.ejpe.2017.11.005.

[51] E. Frollini, C. G. Silva, and E. C. Ramires, “2 - Phenolic resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites,” in Woodhead Publishing Series in Civil and Structural Engineering, J. B. T.-A. F.-R. P. (FRP) C. for S. A. Bai, Ed. Woodhead Publishing, 2013, pp. 7–43.

[52] W. G. Trindade, W. Hoareau, I. A. T. Razera, R. Ruggiero, E. Frollini, and A. Castellan, “Phenolic Thermoset Matrix Reinforced with Sugar Cane Bagasse Fibers: Attempt to Develop a New Fiber Surface Chemical Modification Involving Formation of Quinones Followed by Reaction with Furfuryl Alcohol,” Macromol. Mater. Eng., vol. 289, no. 8, pp. 728–736, Aug. 2004. doi: 10.1002/mame.200300320.

[53] E. F. Rodrigues, T. F. Maia, and D. R. Mulinari, “Tensile strength of polyester resin reinforced sugarcane bagasse fibers modified by estherification,” Procedia Eng., vol. 10, pp. 2348–2352, 2011. doi: 10.1016/j.proeng.2011.04.387.

[54] J. D. James D, S. Manoharan, G. Saikrishnan, and S. Arjun, “Influence of Bagasse/Sisal Fibre Stacking Sequence on the Mechanical Characteristics of Hybrid-Epoxy Composites,” J. Nat. Fibers, pp. 1–11, Feb. 2019. doi: 10.1080/15440478.2019.1581119.

[55] Z. Arif, N. Ali, and S. Mulyati, “Study on Mechanical Properties of Composite Polymeric Foams Reinforced by Bagasse Fibers,” IOP Conf. Ser. Mater. Sci. Eng., vol. 536, 2019. doi: 10.1088/1757-899X/536/1/012023.

[56] S. L. Moni Ribeiro Filho, P. R. Oliveira, T. H. Panzera, and F. Scarpa, “Impact of hybrid composites based on rubber tyres particles and sugarcane bagasse fibres,” Compos. Part B Eng., vol. 159, pp. 157–164, 2019, doi: 10.1016/j.compositesb.2018.09.054.

[57] A. Moubarik, N. Grimi, and N. Boussetta, “Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene,” Compos. Part B Eng., vol. 52, pp. 233–238, 2013. doi: 10.1016/j.compositesb.2013.04.040.

[58] A. Carbonell-Verdú, D. García-García, A. Jordá, M. D. Samper, and R. Balart, “Development of slate fiber reinforced high density polyethylene composites for injection molding,” Compos. Part B Eng., vol. 69, pp. 460–466, 2015. doi: 10.1016/j.compositesb.2014.10.026.

[59] J. Fiorelli, S. B. Bueno, and M. R. Cabral, “Assessment of multilayer particleboards produced with green coconut and sugarcane bagasse fibers,” Constr. Build. Mater., vol. 205, pp. 1–9, 2019. doi: 10.1016/j.conbuildmat.2019.02.024.

[60] H. Liu, H. He, X. Peng, B. Huang, and J. Li, “Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance,” Polym. Adv. Technol., vol. 30, no. 4, pp. 910–922, Apr. 2019. doi: 10.1002/pat.4524.

[61] S. M. Luz, J. Del Tio, G. J. M. Rocha, A. R. Gonçalves, and A. P. Del’Arco, “Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties,” Compos. Part A Appl. Sci. Manuf., vol. 39, no. 9, pp. 1362–1369, 2008. doi: 10.1016/j.compositesa.2008.04.014.

[62] V. F. Ferreira, F. I. Pinheiro, F. S. de Souza, H. I. L. Mei, and M. F. L. Lona, “Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review,” J. Compos. Sci., vol. 3, no. 2, 2019. doi: 10.3390/jcs3020051.

[63] M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, “Characterization and properties of natural fiber polymer composites: A comprehensive review,” J. Clean. Prod., vol. 172, pp. 566–581, 2018. doi: 10.1016/j.jclepro.2017.10.101.

[64] V. Guna, M. Ilangovan, C. Hu, K. Venkatesh, and N. Reddy, “Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications,” Ind. Crops Prod., vol. 131, pp. 25–31, 2019. doi: 10.1016/j.indcrop.2019.01.011.

[65] E. Zini and M. Scandola, “Green composites: An overview,” Polym. Compos., vol. 32, no. 12, pp. 1905–1915, Dec. 2011. doi: 10.1002/pc.21224.

[66] M. Akhshik, S. Panthapulakkal, J. Tjong, and M. Sain, “The effect of lightweighting on greenhouse gas emissions and life cycle energy for automotive composite parts,” Clean Technol. Environ. Policy, vol. 21, no. 3, pp. 625–636, Apr. 2019. doi: 10.1007/s10098-018-01662-0.

[67] S. N. Monteiro et al., “Natural Fibers Reinforced Polymer Composites Applied in Ballistic Multilayered Armor for Personal Protection—An Overview BT,” in Green Materials Engineering, S. Ikhmayies, J. Li, C. M. F. Vieira, J. I. Margem (Deceased), and F. de Oliveira Braga, Eds. Cham: Springer International Publishing, 2019, pp. 33–47.

[68] F. F. G. de Paiva et al., “Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals,” J. Mater. Cycles Waste Manag., vol. 21, no. 2, pp. 326–335, Mar. 2019. doi: 10.1007/s10163-018-0801-y.

[69] L. L. Benites-Lazaro, N. A. Mello-Théry, and M. Lahsen, “Business storytelling about energy and climate change: The case of Brazil’s ethanol industry,” Energy Res. Soc. Sci., vol. 31, pp. 77–85, 2017. doi: 10.1016/j.erss.2017.06.008.

[70] N. Reddy and Y. Yang, “Biofibers from agricultural byproducts for industrial applications,” Trends Biotechnol., vol. 23, no. 1, pp. 22–27, 2005. doi: 10.1016/j.tibtech.2004.11.002.

[71] M. A. S. Schettino and J. N. F. Holanda, “Characterization of Sugarcane Bagasse ash Waste for Its Use in Ceramic Floor Tile,” Procedia Mater. Sci., vol. 8, pp. 190–196, 2015. doi: 10.1016/j.mspro.2015.04.063.

[72] A. Hajlane, H. Kaddami, and R. Joffe, “Chemical modification of regenerated cellulose fibres by cellulose nano-crystals: Towards hierarchical structure for structural composites reinforcement,” Ind. Crops Prod., vol. 100, pp. 41–50, 2017. doi: 10.1016/j.indcrop.2017.02.006.

[73] T. L. Bezerra and A. J. Ragauskas, “A review of sugarcane bagasse for second-generation bioethanol and biopower production,” Biofuels, Bioprod. Biorefining, vol. 10, no. 5, pp. 634–647, Sep. 2016. doi: 10.1002/bbb.1662.

[74] A. P. Becerra Quiroz, A. L. Buitrago Coca, and P. Pinto Baquero, “Sostenibilidad del aprovechamiento del bagazo de caña de azùcar en el Valle del Cauca, Colombia,” Ing. Solidar., vol. 12, no. 20, pp. 133–149, 2017. doi: 10.16925/in.v12i20.1548.

[75] J. F. Libreros Yusty and S. Henao Caicedo, “Evaluación de la ceniza proveniente del bagazo de caña de azúcar como material cementante alternativo para la elaboración de morteros,” Pontificia Universidad Javeriana, 2015.

[76] G. Palazzo and P. Eisenberg, “Producción De Phb Y Evaluación Del Comportamiento Térmico De Compuestos Con Fibras De Bagazo De Caña De Azúcar,” 2014.

[77] J. A. Osorio Saraz, F. Varón Aristizabal, And J. A. Herrera Mejía, “Comportamiento Mecánico Del Concreto Reforzado Con Fibras De Bagazo De Caña De Azúcar,” DYNA, vol. 74, no. 153, pp. 69–79, Sep. 2007.

[78] J. Fernández-Rodríguez and N. Díaz-Hernández, “Evaluación de un material compuesto reforzado con fibras de bagazo en matriz de cemento,” ICIDCA. Sobre los Deriv. la Caña Azúcar, vol. 51, no. 1, pp. 53–59, Aug. 2017.

[79] E. F. Cerqueira, C. A. R. P. Baptista, and D. R. Mulinari, “Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites,” Procedia Eng., vol. 10, pp. 2046–2051, 2011. doi: 10.1016/j.proeng.2011.04.339.

[80] K. Doost-hoseini, H. R. Taghiyari, and A. Elyasi, “Correlation between sound absorption coefficients with physical and mechanical properties of insulation boards made from sugar cane bagasse,” Compos. Part B Eng., vol. 58, pp. 10–15, 2014. doi: 10.1016/j.compositesb.2013.10.011.