Análisis computacional de la nucleación homogénea y crecimiento de gotas aplicado a separadores de gas natural
Publicado 2021-11-23
Palabras clave
- Nucleación,
- Crecimiento de gota,
- Simulación molecular,
- muestreo sombrilla
Cómo citar
Derechos de autor 2021 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Una gota de condensado de gas natural se genera a ciertas condiciones termodinámicas a través de tres etapas: sobresaturación, donde el gas tiene más moléculas de las que debería tener en equilibrio, formando “embriones” de fase líquida; nucleación, donde los embriones forman grupos de diferentes formas y tamaños de orden de nanómetros; y el crecimiento de gota, donde el número de moléculas aumenta hasta alcanzar el equilibrio. En este artículo, se analizan la nucleación homogénea y el crecimiento de una gota de gas natural aplicado a separadores gravitacionales operando a condiciones de alta presión (7 MPa). Los resultados mostraron que, a alta presión, el tamaño de gota inicial alcanzado fue de 8,024 nanómetros y el diámetro final de la gota fue de 4,18 micrómetros.
Descargas
Referencias
- British Petroleum, “BP Statistical Review of World Energy 2017,” Br. Pet., vol. 66, pp. 1-52, 2017 [Online]. Available: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/bp-statistical-review-of-world-energy-2017-full-report.pdf.
- A. Bahadori, Natural gas processing: technology and engineering design. Waltham, MA, USA: Gulf Professional Publishing, 2014.
- M. Stewart, K. Arnold, “Two-Phase Gas–Liquid Separators,” in Gas-Liquid And Liquid-Liquid Separators, New Jersey, NJ, USA: Gulf Professional Publishing, 2008, pp. 65-130.
- G. Gonzalez-Silva, J. Botett-Cervantes, and N. Prieto-Jiménez, “Predicción del equilibrio vapor-líquido de la mezcla acetato de etilo-etanol usando la ecuación de estado de Peng Robinson,” Rev. UIS Ing., vol. 20, no. 1, pp. 135-142, 2020, doi: https://doi.org/10.18273/revuin.v20n1-2021012.
- D. Moreno-Díaz, N. Prieto-Jiménez, G. González-Silva, “Modelación del equilibrio líquido-vapor del sistema cloroformo-metano usando Van Laar y Peng Robinson,” Inf. Técnico, vol. 83, no. 2, pp. 112-120, 2019, doi: https://doi.org/10.23850/22565035.2042.
- J. S. Cornejo Caceres, N. Prieto, G. Gonzalez, and A. Chaves-Guerrero, “Numerical Simulation of a Natural Gas Cylindrical Cyclone Separator Using Computational Fluid Dynamics,” Ind. Eng. Chem. Res., vol. 58, no. 31, pp. 14323-14332, 2019, doi: https://doi.org/10.1021/acs.iecr.9b01217.
- N. Prieto Jiménez, “Simulação da combustão de coque em regeneradores FCC usando fluidodinâmica computacional,” 2011, pp. 96 [Online]. Available: http://repositorio.unicamp.br/jspui/handle/REPOSIP/266866.
- G. González, N. Prieto, I. Mercado, “Large Eddy Simulation (LES) Aplicado a un lecho fluidizado gas–sólido. Parte I: Reactor a escala de laboratorio,” Rev. UIS Ing., vol. 17, no. 1, pp. 93-104, 2018, doi: http://doi.org/10.18273/revuin.v17n1-2018009.
- A. Ghaffarkhah, M. Ameri Shahrabi, M. Keshavarz Moraveji, H. Eslami, “Application of CFD for designing conventional three phase oilfield separator,” Egypt. J. Pet., vol. 26, no. 2, pp. 413-420, 2017, doi: https://doi.org/10.1016/j.ejpe.2016.06.003.
- N. Kharoua, L. Khezzar, H. Saadawi, “CFD Modelling of a Horizontal Three-Phase Separator: A Population Balance Approach,” Am. J. Fluid Dyn., vol. 3, no. 4, pp. 101-118, 2013, doi: https://doi.org/10.5923/j.ajfd.20130304.03.
- G. G. Silva, N. P. Jiménez, O. F. Salazar, “Fluid Dynamics of Gas-Solid Fluidized Beds,” in Advanced Fluid Dynamics, Rijeka, Croatia, InTech, 2012, pp. 39.
- N. P. Jiménez, M. J. Hodapp, M. G. E. Silva, M. Mori, “Simulation of the coke combustion in a FCC regenerator using Computational Fluid Dynamics,” in 4to Taller Latinoamericano de CFD Aplicado a la Industria del Petróleo y Gas, Rio de Janeiro, Brasil, 2010.
- ExxonMobil, “Chapter 5. Drums: Vapor-Liquid Separators.,” in ExxonMobil Design Practices: ExxonMobil Research and Engineering Company, 1999.
- V. Kalikmanov, M. Betting, J. Bruining, D. M. Smeulders, “New developments in nucleation theory and their impact on natural gas separation,” in Conferencia y Exposición Técnica Anual de la SPE, Anaheim, California, EE. UU, 2007, doi: https://doi.org/10.2118/110736-MS.
- V. I. Kalikmanov, “Classical nucleation theory,” in Nucleation theory, Dordrecht: Springer, 2013, pp. 17–41, doi: https://doi.org/10.1007/978-90-481-3643-8_3.
- H. N. Pathak, “Nucleation and Droplet Growth During Co-condensation of Nonane and D 2 O in a Supersonic Nozzle,” Ph.D. dissertation, The Ohio State University, 2013.
- G. Lebon, D. Jou, J. Casas-Vázquez, Understanding non-equilibrium thermodynamics, vol. 295. Heidelberg, Germany: Springer, 2008.
- J. Merikanto et al., “Monte Carlo simulations of molecular clusters in nucleation,” dissertation, University of Helsinki, 2007.
- J. L. Katz, H. Wiedersich, “Nucleation theory without Maxwell demons,” J. Colloid Interface Sci., vol. 61, no. 2, pp. 351-355, 1977, doi: https://doi.org/10.1016/0021-9797(77)90397-6.
- S. L. Girshick, C. Chiu, “Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor,” J. Chem. Phys., vol. 93, no. 2, pp. 1273-1277, 1990, doi: https://doi.org/10.1063/1.459191.
- G. Wilemski, “The Kelvin equation and self‐consistent nucleation theory,” J. Chem. Phys., vol. 103, no. 3, pp. 1119-1126, 1995, doi: https://doi.org/10.1063/1.469822.
- V. I. Kalikmanov, J. Wölk, T. Kraska, “Argon nucleation: Bringing together theory, simulations, and experiment,” J. Chem. Phys., vol. 128, no. 12, pp. 124506, 2008, doi: https://doi.org/10.1063/1.2888995.
- I. Napari, “Density functional theory of nucleation and phase behavior in binary fluid systems,” in Finnish Association for Aerosol Research, Helsinki, no. 49, 2000, pp. 1-27.
- B. Chen, J. I. Siepmann, K. J. Oh, M. L. Klein, “Simulating vapor–liquid nucleation of n-alkanes,” J. Chem. Phys., vol. 116, no. 10, pp. 4317-4329, 2002, doi: https://doi.org/10.1063/1.1445751.
- M. Santra, S. Chakrabarty, B. Bagchi, “Gas-liquid nucleation in a two dimensional system,” J. Chem. Phys., vol. 129, no. 23, pp. 234704, 2008, doi: https://doi.org/10.1063/1.3037241.
- R. Becker and W. Döring, “The kinetic treatment of nuclear formation in supersaturated vapors,” Ann. Phys. (N. Y)., vol. 24, pp. 719, 1935.
- A. Z. Panagiotopoulos, “Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble,” Mol. Phys., vol. 61, no. 4, pp. 813-826, 1987, doi: https://doi.org/10.1080/00268978700101491.
- R. W. Hakala, “A new derivation of the Boltzmann distribution law,” J. Chem. Educ., vol. 38, no. 1, pp. 33, 1961.
- B. Chen and J. I. Siepmann, “Improving the Efficiency of the Aggregation− Volume− Bias Monte Carlo Algorithm,” J. Phys. Chem. B, vol. 105, no. 45, pp. 11275-11282, 2001, doi: https://doi.org/10.1021/jp012209k.
- K. Johannes, “Umbrella sampling,” Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 1, no. 6, pp. 932-942, Apr. 2011, doi: https://doi.org/10.1002/wcms.66.
- J. B. Young, “The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number,” Int. J. Heat Mass Transf., vol. 34, no. 7, pp. 1649-1661, 1991, doi: https://doi.org/10.1016/0017-9310(91)90143-3.
- G. Gyarmathy, “The spherical droplet in gaseous carrier streams: review and synthesis,” Multiph. Sci. Technol., vol. 1, no. 1-4, 1982, doi: https://doi.org/10.1615/MultScienTechn.v1.i1-4.20.
- Ø. Patursson et al., “Development of a porous media model with application to flow through and around a net panel,” Ocean Eng., vol. 37, no. 2-3, pp. 314-324, 2010, doi: https://doi.org/10.1016/j.oceaneng.2009.10.001.
- T. Helsør and H. F. Svendsen, “Experimental characterization of pressure drop in dry demisters at low and elevated pressures,” Chem. Eng. Res. Des., vol. 85, no. 3, pp. 377-385, 2007, doi: https://doi.org/10.1205/cherd06048.
- M. Souders and G. G. Brown, “Design of fractionating columns I. Entrainment and capacity,” Ind. Eng. Chem., vol. 26, no. 1, pp. 98-103, 1934.