Vol. 20 No. 1 (2021): Revista UIS Ingenierías
Articles

Design considerations for a Michell-Banki turbine

Fredys Romero
Universidad de Antioquia
Laura Isabel Velasquez
Universidad de Antioquia
Edwin Chica
Universidad de Antioquia

Published 2020-10-21

Keywords

  • cross-flow turbine,
  • Michell-Banki turbine,
  • blades,
  • nozzle,
  • efficiency,
  • desing,
  • rotor,
  • design,
  • hydraulic energy,
  • entrance arch,
  • computational simulation,
  • ANSYS
  • ...More
    Less

How to Cite

Romero, F., Velasquez, L. I., & Chica, E. (2020). Design considerations for a Michell-Banki turbine. Revista UIS Ingenierías, 20(1), 23–46. https://doi.org/10.18273/revuin.v20n1-2021003

Abstract

Michell-Banki turbines, also known as cross-flow turbines, are hydraulic machines used for the production and generation of of small-scale hydroelectric power. Since its creation, the Michell-Banki turbine has been the subject of multiple investigations focused on improving eciency in order to obtain the maximum use of the available hydraulic resource. This work presents the main characteristics of the turbine, its components and its operating principle. Subsequently, a description of the most relevant research and contributions of each study. Then an analysis is made of the use and application of the Michell-Banki turbine and the opportunities for use in the Colombian territory with the aim of providing the energy resource to areas that lack the service and that have water resources. Finally, the most important considerations to take into account for the design of this type of turbines are described.

Downloads

Download data is not yet available.

References

[1] M. Rahman, J. Tan, M. Fadzlita, A. W. K. Muzammil, “A review on the development of gravitational water vortex power plant as alternative renewable energy resources”, IOP Conference Series: Materials Science and Engineering, vol. 217, p. 012007, 2017, doi: 10.1088/1757-899X/217/1/012007

[2] A. Marchegiani, “Metodología de diseño y cálculo de una turbina de flujo transversal”, Universidad Nacional de Comahue, Neuquén, Argentina, 1992.

[3] F. Zarate, C. Aguerre, R. Aguerre, “Turbina mitchell-banki: Criterios de diseño, selección y utilización”, Universidad Nacional de La Plata, Argentina, 1987.

[4] C. Staniscia, “Selección y diseño de una turbina de flujo transversal mitchell-banki”, Universidad Nacional de Comahue, Neuquén, Argentina, 1990.

[5] “Turbinas ossberger de flujo cruzado”, 2020. [En línea], Disponible en: http://www.hnsa.com.co

[6] H. G. Totapally, N. M. Aziz, “Refinement of cross-flow turbine design parameters”, Journal of energy engineering, vol. 120, no. 3, pp. 133-147, 1994, doi: 10.1061/(ASCE)0733-9402(1994)120:3(133)

[7] OLADE, “Apuntes para un manual de diseño, estandarización y fabricación de equipos para pequeñas centrales hidroeléctricas”, Universidad Nacional de La Plata, Argentina, 1988.

[8] P. F. Díez, “Turbinas hidráulicas”, Universidad de Cantabria, España, 1996.

[9] R. Adhikari, D. Wood, “Computational analysis of a double-nozzle crossflow hydroturbine”, Energies, vol. 11, no. 12, pp. 3380, 2018, doi: 10.3390/en11123380.

[10] A. F. Coz Pancorbo, “Diseño de una turbina michell–banki”, tesis doctoral, Universidad Nacional de Ingeniería, Lima, 1961.

[11] W. Durgin, W. Fay, “Some fluid flow characteristics of a cross-flow type hydraulic turbine”, Small Hydro Power Fluid Machinery, pp. p77-83, 1984.

[12] L. R. Van Dixhorn, “Experimental determination of blade forces in a cross-flow turbine”, tesis de grado, Virginia Polytechnic Institute and State University, 1984.

[13] C. A. Mockmore, F. Merryfield et al., “Dielectric Properties of Ponderosa Pine at High Frequencies”, en Engineering Experiment Station, USA: Oregon State System of Higher Education, 1949, pp. 25-40.

[14] O. Balje, Turbomachines-A guide to design, selection, and theory. USA: John Wiley & Sons, 1981.

[15] Y. Nakase, J. Fukutomi, T.Watanabe, T. Suetsugu, T. Kubota, “A study of crossflow turbine (e_ects of nozzle shape on its performance)”, Small Hydro Power Fluid Machinery, pp. 13-18, 1982.

[16] J. Makansi, “Equipment options multiply for small-scale hydro”, Power, vol. 127, no. 5, pp. 33, 1983.

[17] R. Hothersall, “Micro-hydro, turbine selection criteria”, International Water Power and Dam Construction, pp. 26-29, 1984.

[18] S. Khosrowpanah, M. Albertson, A. Fiuzat, “Historical overview of crossflow turbine”, International Water Power and Dam Construction, pp. 38-43, 1984.

[19] S. Khosrowpanah, “Experimental study of the crossflow turbine”, Universidad del estado de Colorado, 1984.

[20] P. Filianoti, V Sammartano, M. Sinagra, T. Tucciarelli, “A banki–michell turbine for in-line water supply systems”, Journal of Hydraulic Research, vol. 55, no. 5, pp. 686-694, 2017, doi: 10.1080/00221686.2017.1335246

[21] O. Thapar, L. Albertson, “Ultra low head small hydro power system technology for economic development”, Water Power, vol. 3, pp. 1919, 1985.

[22] S. Morales, L. Corredor, J. Paba, L. Pacheco, “Etapas de desarrollo de un proyecto de pequeñas centrales hidroeléctricas: Contexto y criterios básicos de implementacion”, Dyna, vol. 81, no. 184, pp. 178-185, 2014.

[23] A. Panasyuk, K. Tokombaev, G. Shainova, “Small hydroelectric stations and prospects of their development”, Hydrotechnical construction, vol. 21, pp. 366-373, 1987, doi: 10.1007/BF01427663

[24] A. Patzig, “Optimizing fluctuating flows”, Alternative Sources Energy, vol. 95, 1987.

[25] S. Khosrowpanah, A. Fiuzat, M. L. Albertson, “Experimental study of cross-flow turbine”, Journal of Hydraulic Engineering, vol. 114, no. 3, pp. 299-314, 1988, doi: 10.1061/(ASCE)0733-9429(1988)114:3(299)

[26] A. Fiuzat, B. Arkerkar, “The use of interior guide tube in crossflow turbines”, Water Power, 1989.

[27] A. Fiuzat, B. Akerkar, “Power outputs of two stages of cross-flow turbine”, Journal of energy engineering, vol. 117, no. 2, pp. 57-70, 1991, doi: 10.1061/(ASCE)0733-9402(1991)117:2(57)

[28] V. Desai, N. Aziz, “Parametric evaluation of cross-flow turbine performance”, Journal of energy engineering, vol. 120, no. 1, pp. 17-34, 1994, doi: 10.1061/(ASCE)0733-9402(1994)120:1(17)

[29] N. Costa Pereira, J. Borges, “Study of the nozzle flow in a cross flow turbine”, International journal of mechanicals sciences, vol. 38, pp. 283-302, 1996, doi: 10.1016/0020-7403(95)00055-0

[30] A. Marchegiani, “Simulación numérica de flujo en una turbina tipo banki”, PCH Noticias & SPH News, vol. 31, pp. 18-23, 2001.

[31] A. Marchegiani, M. Montiveros, “Efecto de la geometría del inyector en una turbina tipo banki”, en IX Encuentro latino Americano y del caribe sobre Pequeños Aprovechamientos Hidroenergéticos, 2005.

[32] A. R. Marchegiani, N. M. Nigro, M. A. Storti, “Modelación numérica del flujo en el inyector de una turbina hidráulica de flujo transversal”, Mecánica computacional, vol. 21, pp. 683-699, 2002.

[33] R. Cotacallapa, “Influencia y validación de la modelación de la modificación de principios que rigen el diseño de una turbina hidraúlica de flujo cruzado”, Universidad nacional de ingeniería de Perú, 2005.

[34] J. Goncalves de Mello, M. Fagá, F. Raia, G. Crisi, “Optimización del rendimiento de una turbina de flujo cruzado”, en VIII Congreso iberoamericano de Ingeniería mecánica, 2007.

[35] R. Cotacallapa, S. Gonzáles, “Modelamiento de los parámetros de funcionamiento de la turbina hidráulica de flujo cruzado aplicando el método de elementos finitos”, en VIII Congreso iberoamericano de Ingeniería mecánica, 2007.

[36] Y. Choi, H. Yoon, S. Ooike, Y. Kim, Y. Lee, “Performance improvement of a cross flow hydro turbine by air layer effect”, Earth and Environmental Science, vol. 12, pp. 12-30, 2010, doi: 10.1088/1755-1315/12/1/012030

[37] J. De Andrade, C. Curiel, F. Kenyery, O. Aguillón, A. Vásques, M. Asuaje, “Numerical investigation of the internal flow in a banki turbine”, International Journal of rotating Machinery, vol. 2011, pp. 17-29, 2011, doi: 10.1155/2011/841214

[38] J. Camarena, B. Hinostroza, B. Gamboa, y J. Ramos, “Redimensionado y caracterización energética de una turbina Michell-Banki de 1kw”, tesis de grado, Universidad señor de Sipán, Perú, 2011.

[39] B. A. Nasir, “Design of high e_ciency cross-flow turbine for hydro-power plant”, International Journal of Engineering and Advanced Technology (IJEAT) ISSN, vol.2, no. 3, pp. 2249-8958, 2013.

[40] V. Sammartano, C. Aricò, A. Carravetta, O. Fecarotta, T. Tucciarelli, “Banki-michell optimal design by computational fluid dynamics testing and hydrodynamic analysis”, Energies, vol. 6, no. 5, pp. 2362-2385, 2013, doi: 10.3390/en6052362

[41] N. Acharya, C.-G. Kim, B. Thapa, Y.-H. Lee, “Numerical analysis and performance enhancement of a cross-flow hydro turbine”, Renewable energy, vol. 80, pp. 819-826, 2015, doi: 10.1016/j.renene.2015.01.064

[42] J. Adhikari, Ram, Vaz y D. Wood, “Cavitation inception in crossflow hydro turbines”, Energies, vol. 9, no. 4, p. 237, 2016, doi: 10.3390/en9040237

[43] R. Adhikari, D. Wood, “A new nozzle design methodology for high efficiency crossflow hydro turbines”, Energy for Sustainable Development, vol. 41, pp. 139-148, 2017, doi: 10.1016/j.esd.2017.09.004

[44] Budiarso, D. Adanta, A. Prakoso, A. I. Siswantara, R. Dianofitra, Warjito, “Effect of air foil profile in cross-flow banki turbine bladeusing numerical simulation”, en 15th International Conference on Quality in Research, 2017.

[45] V. Verma, V. K. Gaba, S. Bhowmick, “An experimental investigation of the performance of cross-flow hydro turbines”, Energy Procedia, vol. 141, pp. 630-634, 2017, doi: 10.1016/j.egypro.2017.11.084

[46] B.I. A. Zaffa, M. A. Sarwan, J. A. Chat, M. Asif, "Optimization of Blade Profiles of Cross Flow (CFM)", en International Journal of Power and Energy Conversion, 2017.

[47] Y. C. Ceballos, M. C. Valencia, D. H. Zuluaga, J. Del Rio, S. García, “Influence of the number of blades in the power generated by a Michell-Banki turbine”, International Journal Of Renewable Energy Research IJRER, vol. 7, no. 4, pp. 1989-1997, 2017.

[48] A. Elbatran, O. Yaakob, Y. M. Ahmed, A. S. Shehata, “Numerical and experimental investigations on e_cient design and performance of hydrokinetic banki cross flow turbine for rural areas”, Ocean Engineering, vol. 159, pp. 437-456, 2018, doi: 10.1016/j.oceaneng.2018.04.042

[49] D. Adanta, R. Hindami, A. I. Siswantara et al., “Blade depth investigation on cross-flow turbine by numerical method”, en 2018 4th International Conference on Science and Technology (ICST). IEEE, 2018, pp. 1-6.

[50] R. C. Adhikari, D. Wood, “The design of high efficiency crossflow hydro turbines: A review and extension”, Energies, vol. 11, no. 2, pp. 267, 2018, doi: 10.3390/en11020267

[51] R. C. Adhikari, D. Wood, “Computational analysis of part-load flow control for crossflow hydro-turbines”, Energy for Sustainable Development, vol. 45, pp. 38-45, 2018, doi: 10.1016/j.esd.2018.04.003

[52] R. C. Adhikari, Wood, “Computational analysis of a double-nozzle crossflow hydroturbine”, Energies, vol. 11, no. 12, pp. 33-80, 2018, doi: 10.3390/en11123380

[53] D. Jiyun, S. Zhicheng, Y. Hongxing, “Study on the effects of blades outer angle on the performance of inline cross-flow turbines”, Energy Procedia, vol. 158, pp. 1039-1045, 2019, doi: 10.1016/j.egypro.2019.01.252

[54] S. Ahmad, S. Ali, N. Alsaadi, M. H. Tahir, M. Shahid, S. Razzaq, M. A. Sabri, M. A. Asghar, M. W. Saeed, “Experimental evaluation on performance of novel cross-flow impulse turbine for water stream in hilly areas of pakistan”, International Journal of Renewable Energy Research (IJRER), vol. 9, no. 4, pp. 1782-1789, 2019.

[55] D. Sutikno, R. Soenoko, S. Soeparman, S. Wahyudi, M. A. Azmi, “The performance characteristics of the low head cross flow turbine using nozzle roof curvature radius centered on shaft axis”, International Journal of Integrated Engineering, vol. 11, no. 5, pp. 12-22, 2019.

[56] R. K. Ranjan, N. Alom, J. Singh, B. K. Sarkar, “Performance investigations of cross flow hydro turbine with the variation of blade and nozzle entry arc angle”, Energy conversion and management, vol. 182, pp. 41-50, 2019, doi: 10.1016/j.enconman.2018.12.075

[57] S. Leguizamón, F. Avellan, “Computational parametric analysis of the design of cross-flow turbines under constraints”, Renewable Energy, 2020, vol. 159, pp. 300-311, doi: 10.1016/j.renene.2020.03.187

[58] D. Jiyun, Z. Shen, H. Yang, “Effects of di_erent block designs on the performance of inline cross-flow turbines in urban water mains”, Applied energy, vol. 228, pp. 97-107, 2018, doi: 10.1016/j.apenergy.2018.06.079

[59] D. Jiyun, S. Zhicheng, y Y. Hongxing, “Study on the e_ects of blades outer angle on the performance of inline cross-flow turbines”, Energy Procedia, vol. 158, pp. 1039-1045, 2019, doi: 10.1016/j.egypro.2019.01.252

[60] Congreso de Colombia, “Ley 1715 de 2014”, 2019 [En línea]. Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html.

[61] F. Barbir, T. Veziroǧlu, H. Plass Jr, “Environmental damage due to fossil fuels use”, International journal of hydrogen energy, vol. 15, no. 10, pp. 739-749, 1990, doi: 10.1016/0360-3199(90)90005-J

[62] Y. Keawsuntia, “Electricity generation from micro hydro turbine: A case study of crossflow turbine”, en 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE). IEEE, 2011, pp. 1–4.

[63] J. I. G. Gómez, E. A. P. Higuita, C. A. P. Gutiérrez, “La turbina Michell-Banki y su presencia en Colombia”, Avances en recursos hidráulicos, no. 17, pp. 33-42, 2008.

[64] D. C. Montgomery, Diseño y análisis de experimentos. Arizona, USA: Limusa Wiley, 2005.