Vol. 20 Núm. 4 (2021): Revista UIS Ingenierías
Artículos

Evaluación de cenizas de fondo de carbón para la fabricación de ladrillos de arcilla: estudio preliminar

Janneth Torres-Agredo
Universidad Nacional de Colombia
Luisa Fernanda Mosquera-Idrobo
Universidad Nacional de Colombia
Patricia Paz-Villegas
C.I. Lago Verde S.A.S
Miguel Fernando Díaz-Huertas
C.I. Lago Verde S.A.S

Publicado 2021-08-11

Palabras clave

  • aprovechamiento,
  • carbón,
  • cenizas de fondo,
  • gestión de residuos,
  • residuo sólido,
  • ladrillos de arcilla,
  • granulometría láser,
  • fluorescencia de rayos X,
  • difracción de rayos X
  • ...Más
    Menos

Cómo citar

Torres-Agredo, J., Mosquera-Idrobo, L. F., Paz-Villegas, P., & Díaz-Huertas, M. F. (2021). Evaluación de cenizas de fondo de carbón para la fabricación de ladrillos de arcilla: estudio preliminar. Revista UIS Ingenierías, 20(4), 161–170. https://doi.org/10.18273/revuin.v20n4-2021013

Resumen

El crecimiento industrial, económico y social ha generado grandes cantidades de residuos sólidos que causan impactos negativos al medioambiente y a la salud humana. Se presenta un estudio preliminar de cenizas de fondo de carbón (CBA), residuo de la combustión del carbón, para ser usado como materia prima en la fabricación de ladrillos de arcilla. Se aplicaron técnicas de granulometría láser, fluorescencia de rayos X y difracción de rayos X; además, se determinó la densidad real y aparente y el contenido de materia orgánica. Se aplicaron técnicas ambientales a través del ensayo de TCLP (toxicity characteristic leaching procedure) y ecotoxicidad por Daphnia pulex. Se encontró que el residuo es un material amorfo, compuesto por óxidos de silicio, hierro, aluminio y otros; además, el residuo cumple con la normatividad medioambiental. De acuerdo con los resultados, se concluye que este residuo tiene un gran potencial para ser usado en la fabricación de ladrillos de arcilla.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] W. Cai, et al., “Developing the ecological compensation criterion of industrial solid waste based on energy for sustainable development,” Rev. Energy, vol. 157, pp. 940-948, 2018, doi: 10.1016/j.energy.2018.05.207.

[2] S. Abbas, et al., “Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties,” J. of Building Engineering, vol. 14, pp. 7-14, 2017, doi: 10.1016/j.jobe.2017.09.008.

[3] World Coal Association, “Energy Technology Perspectives,” 2015 [Online]. Available: https://www.worldcoal.org/energy-technology-perspectives-2015.

[4] U.S. Energy. Information Administration, “International Energy Outlook (IEO),” 2016 [Online]. Available: https://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf.

[5] R. Vinai, et al., “Coal combustion residues valorisation: Research and development on compressed brick production,” J. Construction and Building Materials, vol. 40, pp.1088-1096, 2013, doi: 10.1016/j.conbuildmat.2012.11.096.

[6] M. E., Munawer, “Human health and environmental impacts of coal combustion and post-combustion wastes,” J. of Sustainable Mining, vol. 17, no. 2, pp. 87-96, 2018, doi: 10.1016/j.jsm.2017.12.007.

[7] P. Asokan, et al., “Coal combustion residues-environmental implications and recycling potentials,” J. Resources, Conservation and recycling, vol. 43, no. 3, pp. 239-262, 2015, doi: 10.1016/j.resconrec.2004.06.003.

[8] C. Argiz, A. Moragues, E. Menéndez, “Use of ground coal bottom ash as cement constituent in concretes exposed to chloride environments,” J. of Cleaner Production, vol. 170, pp. 25-33, 2018, doi: 10.1016/j.jclepro.2017.09.117.

[9] K. B. Jones, L. F. Ruppert, S. M. Swanson, “Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants,” International Journal of Coal Geology, vol. 94, pp. 337-348, 2012, doi: 10.1016/j.coal.2011.10.007.

[10] S. S. G. Hashemi, et al., “Safe disposal of coal bottom ash by solidification and stabilization techniques,” Construction and Building Materials, vol. 197, pp. 705-715, 2019, doi: 10.1016/j.conbuildmat.2018.11.123.

[11] S. Naganathan, A. Mohamed, K. N. Mustapha, “Performance of bricks made using fly ash and bottom ash,” Construction and Building Materials, vol. 96, pp. 576-580, 2015, doi: 10.1016/j.conbuildmat.2015.08.068.

[12] N. Singh, M. Mithulraj, S. Arya, “Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: A review,” Resources, Conservation and Recycling, vol. 138, pp. 257-271, 2018, doi: 10.1016/j.resconrec.2018.07.025.

[13] U.S. EPA, “Final Rule on Coal Combustion Residuals Generated by Electric Utilities,” 2015 [Online]. Available: https://www.epa.gov/coalash/fact-sheet-2015-final-rule-disposal-coal-combustion-residuals-generated-electric-utilities.

[14] F. Andreola, et al., “Reciclado de residuos industriales en la fabricación de ladrillos de construcción: 1ª parte,” Rev. Materiales de construcción, vol. 280, pp. 5-16, 2005, doi: 10.3989/mc.2005.v55.i280.202.

[15] B. S. Da Fonseca, C. Galhano, D. Seixas, “Technical feasibility of reusing coal combustion by-products from a thermoelectric power plant in the manufacture of fired clay bricks,” Applied Clay Science, vol. 104, pp. 189-195, 2015, doi: 10.1016/j.clay.2014.11.030.

[16] S. R. Bragança, A. Zimmer, C. P. Bergmann, “Use of mineral coal ashes in insulating refractory brick,” Refractories and Industrial Ceramics, vol. 49, no. 4, pp. 320-323, 2008, doi: 10.1007/s11148-008-9088-1.

[17] Toxicity Characteristic Leaching Procedure. Code of Federal Regulations, EPA Test Method 1311 – TCLP. 40 CFR part 261, appendix II, Julio 1991.

[18] S. K. Choi, et al., “Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound,” Fuel, vol. 81, no. 8, pp. 1083-1090, 2002, doi: 10.1016/S0016-2361(02)00006-6.

[19] N. V. Russell, et al., “Ash deposition of a Spanish Anthracite: effect of included and excluded mineral matter,” Fuel, vol. 81, no. 5, pp. 657-663, 2002, doi: 10.1016/S0016-2361(01)00155-7.

[20] B. W. Ramme, M. P. Tharaniyil, Coal Combustion Products Utilization Handbook. USA: A We Energies Publication, 2013.

[21] J. Kierczak, K. Chudy, “Mineralogical, Chemical, and Leaching Characteristics of Coal Combustion Bottom Ash from a Power Plant Located in Northern Poland,” Polish Journal of Environmental Studies, vol. 23, no. 5, pp. 1627–1635, 2014.

[22] E. Aydin, “Novel coal bottom ash waste composites for sustainable construction,” J. Construction and Building Materials, vol. 124, pp. 582-588, 2016, doi: 10.1016/j.conbuildmat.2016.07.142.

[23] M. Singh, “Coal bottom ash”, in Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, Woodhead publishing, 2018, pp. 3-50, doi: 10.1016/B978-0-08-102156-9.00001-8.

[24] P. M. Velasco, et al., “Fired clay bricks manufactured by adding wastes as sustainable construction material–A review,” Construction and Building materials, vol. 63, pp. 97-107, 2014, doi: 10.1016/j.conbuildmat.2014.03.045.

[25] J. Amado, P. Villafrades, E. Tuta, “Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de Barichara, Santander,” Rev. Dyna, vol. 78, no. 167, pp. 53-61, 2011.

[26] M. H. Riaz, A. Khitab, S. Ahmed, “Evaluation of sustainable clay bricks incorporating Brick Kiln Dust,” J. of Building Engineering, vol. 24, pp. 100725, 2019, doi: 10.1016/j.jobe.2019.02.017.

[27] J. Sánchez-Molina, F. A. Corpas-Iglesias, J. P. Rojas-Suárez, “Cenizas Volantes de Termoeléctrica como Materia Prima para la Fabricación de Materiales Cerámicos de Construcción: Efecto de la Temperatura de Cocción sobre el Material,” Información tecnológica, vol. 30, no. 1, pp. 285-298, 2019, doi: 10.4067/S0718-07642019000100285.

[28] M. Rafieizonooz, et al., “Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement,” J. Construction and Building Materials, vol. 116, pp. 15-24, 2016, doi: 10.1016/j.conbuildmat.2016.04.080.

[29] M. Singh, R. Siddique, “Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete,” J. of cleaner production, vol. 112, part. 1, pp. 620-630, 2016, doi: 10.1016/j.jclepro.2015.08.001.

[30] M. Sutcu, et al., “Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production,” J. of Cleaner Production, vol. 233, pp. 753-764, 2019, doi: 10.1016/j.jclepro.2019.06.017.

[31] Z. T. Yao, et al., “A comprehensive review on the applications of coal fly ash,” Earth-Science Reviews, vol. 141, pp. 105-121, 2015, doi: 10.1016/j.earscirev.2014.11.016.

[32] G. Singh, S. Kumar, S. K. Mohapatra, “An Investigation on Leaching Characteristics for Indian Bottom Ash,” Materials Today: Proceedings, vol. 5, no. 11, part. 3, pp. 23720-23725, 2018, doi: 10.1016/j.matpr.2018.10.162.

[33] G. Jegadeesan, S. R. Al-Abed, P. Pinto, “Influence of trace metal distribution on its leachability from coal fly ash,” Fuel, vol. 87, no. 10-11, pp. 1887-1893, 2008, doi: 10.1016/j.fuel.2007.12.007.

[34] J. Ribeiro, B. Valentim, C. Ward, D. Flores, “Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact,” International Journal of Coal Geology, vol. 86, no. 2-3, pp. 204-212, 2011, doi: 10.1016/j.coal.2011.01.010.

[35] S. Sushil, V. S. Batra, “Analysis of fly ash heavy metal content and disposal in three thermal power plants in India,” Fuel, vol. 85, no. 17-18, pp. 2676-2679, 2006, doi: 10.1016/j.fuel.2006.04.031.