Vol. 20 No. 1 (2021): Revista UIS Ingenierías
Articles

Guiding questions for catalyst synthesis and its use in selective catalytic oxidation reactions

William Giovanni Cortés-Ortiz
Universidad El Bosque
Carlos Guerrero-Fajardo
Universidad Nacional de Colombia

Published 2020-11-10

Keywords

  • heterogeneous catalysis,
  • guiding questions,
  • selective oxidation,
  • methane,
  • methanol,
  • formaldehyde,
  • sol-gel,
  • catalyst synthesis,
  • impregnation,
  • calcination
  • ...More
    Less

How to Cite

Cortés-Ortiz, W. G., & Guerrero-Fajardo, C. (2020). Guiding questions for catalyst synthesis and its use in selective catalytic oxidation reactions. Revista UIS Ingenierías, 20(1), 177–196. https://doi.org/10.18273/revuin.v20n1-2021016

Abstract

This document presents a brief history of catalysis, as well as of the selective oxidation processes of hydrocarbons. On the other hand, the basic concepts involved in heterogeneous catalysis are addressed, emphasizing the role of catalytic materials in chemical oxidation processes and posing a series of guiding questions that must be followed when addressing a process catalyzed by solid materials. In the same way, the preparation methods known in the literature as sol-gel and impregnation are shown, identifying the influence of each preparation step with the physical and chemical properties of the materials. Finally, a case study applied to the selective catalytic oxidation of methane and methanol using iron, molybdenum, and vanadium catalytic materials synthesized by the sol-gel method is presented.

Downloads

Download data is not yet available.

References

[1] D. Burtron, “Development of the Science of Catalysis”, en Handbook of Heterogeneous Catalysis, Wiley, 2008, pp. 17-38, doi: 10.1002/9783527610044.hetcat0002

[2] G. Somorjai, “Surfaces - An introduction”, en Introduction to Surface Chemistry and Catalysis, 1st ed., Wiley, 1994, pp. 1-36.

[3] U. Nieken, O. Watzenberger, “Periodic operation of the Deacon process”, Chem. Eng. Sci., vol. 54, no. 13-14, pp. 2619-2626, Jul. 1999, doi: 10.1016/S0009-2509(98)00490-4

[4] M.-Á. Gómez-García, I. Dobrosz-Gómez, E. GilPavas, J. Rynkowski, “Simulation of an industrial adiabatic multi-bed catalytic reactor for sulfur dioxide oxidation using the Maxwell–Stefan model”, Chem. Eng. J., vol. 282, pp. 101-107, Dec. 2015, doi: 10.1016/J.CEJ.2015.02.013

[5] Y. H. Hu, E. Ruckenstein, “Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming”, Adv. Catal., vol. 48, pp. 297-345, Jan. 2004, doi: 10.1016/S0360-0564(04)48004-3

[6] V. Sadykov et al., “Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives”, Appl. Catal. A Gen., vol. 204, no. 1, pp. 59-87, 2000, doi: 10.1016/S0926-860X(00)00506-8

[7] A. Lattes, “De l’hydrogénation catalytique à la théorie chimique de la catalyse: Paul Sabatier, chimiste de génie, apôtre de la décentralisation”, Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem., vol. 3, no. 9, pp. 705-709, 2000, doi: 10.1016/S1387-1609(00)01184-1

[8] R. Zimdahl, “Nitrogen”, Six Chem. That Chang. Agric., Colorado, CO, USA: Elsevier, 2015, pp. 55-72.

[9] J. M. López Nieto, B. Solsona, "Gas phase heterogeneous partial oxidation reactions", Metal Oxides in Heterogeneous Catalysis, pp. 211-286, 2018, doi: 10.1016/B978-0-12-811631-9.00005-3

[10] R. K. Grasselli, “Fundamental principles of selective heterogeneous oxidation catalysis”, Top. Catal., vol. 21, no. 1-3, pp. 79-88, 2002, doi: 10.1023/A:1020556131984

[11] P. Mars, D. W. Van Krevelen, “Oxidations carried out by means of vanadium oxide catalysts”, Chem. Eng. Sci., vol. 3, pp. 41-59, 1954, doi: 10.1016/S0009-2509(54)80005-4

[12] B. M. Reddy, “Redox Properties of Metal Oxides”, en Metal Oxides: Chemistry and Applications, Boca Raton, FL, USA: CRC Press Taylor & Francis, 2005, pp. 215-246.

[13] B. K. Hodnett, Heterogeneous Catalytic Oxidation. London, United Kingdom: John Wiley & Sons Inc., 2000.

[14] A. J. Medford et al., “From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis”, Journal of Catalysis, vol. 328, pp. 36-42, 2015, doi: 10.1016/j.jcat.2014.12.033

[15] S. P. S. Andrew, “Theory and practice of the formulation of heterogeneous catalysts”, Chem. Eng. Sci., vol. 36, no. 9, pp. 1431-1445, 1981, doi: 10.1016/0009-2509(81)85106-8

[16] C. Perego, P. Villa, “Catalyst preparation methods”, Catal. Today, vol. 34, pp. 281-305, 1997, doi: 10.1016/S0920-5861(96)00055-7

[17] B. Heinrichs, S. Lambert, N. Job, J. P. Pirard, “Sol-Gel Synthesis of Supported Metals”, en Catalyst Preparation Science and Engineering, Boca Raton, FL, USA: CRC Press,Taylor& Francis Group, 2007, pp. 163-208.

[18] N. R. Hunter, H. D. Gesser, L. A. Morton, P. S. Yarlagadda, “Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane”, Appl. Catal., vol. 57, pp. 45-54, 1990, doi: 10.1016/S0166-9834(00)80722-8

[19] S. Teichner, G. Gardes, “Methods for the Manufacture of Composite Catalysts Containing a Composition of a Transition Metal on a Support”, US3963646A.

[20] M. Astier et al., “Preparation and Catalytic Properties of Supported Metal or Metal-Oxide on Inorganic Oxide Aerogels”, Stud. Surf. Sci. Catal., vol. 1, no. 3, pp. 315-330, 1976, doi: 10.1016/S0167-2991(08)63961-0

[21] S. Kistler, “Coherent Expanded-Aerogels”, J. Phys. Chem., vol. 36, no. 1, pp. 52-64, 1931, doi: 10.1021/j150331a003

[22] A. Kaiser, C. Gorsmann, C. Schubert, “Influence of the Metal Complexation on Size and Composition of Cu/Ni Nano-Particles Prepared by Sol-Gel Processing”, J. Sol-Gel Sci. Technol., vol. 8, no. 1-3, pp. 795–799, 1997, doi: 10.1007/BF02436940

[23] B. Heinrichs, F. Noville, J. P. Pirard, “Pd/SiO2-cogelled aerogel catalysts and impregnated aerogel and xerogel catalysts: Synthesis and characterization”, J. Catal., vol. 170, no. 2, pp. 366-376, 1997, doi: 10.1006/jcat.1997.1772

[24] S. Lambert, C. Cellier, P. Grange, J. P. Pirard, B. Heinrichs, “Synthesis of Pd/SiO2, Ag/SiO2, and Cu/SiO 2 cogelled xerogel catalysts: Study of metal dispersion and catalytic activity”, J. Catal., vol. 221, no. 2, pp. 335-346, 2004, doi: 10.1016/j.jcat.2003.07.014

[25] C. J. Brinker, G. Scherer, Sol-Gel Science The Physics and Chemistry of Sol–Gel Processing. San Diego, CA, USA: Academy Press.Inc, 1990.

[26] D. Ward, E. Ko, “Preparing Catalytic Materials by the Sol-Gel Method”, Ind. Eng. Chem. Res., vol. 34, no. 2, pp. 421-433, 1995, doi: 10.1021/ie00041a001

[27] M. Schneider, A. Baiker, “Titania-based aerogels”, Catal. Today, vol. 35, pp. 339-365, 1997, doi: 10.1016/S0920-5861(96)00164-2

[28] C. J. Brinker, “Hydrolysis and condensation of silicates: Effects on structure”, J. Non. Cryst. Solids, vol. 100, no. 1-3, pp. 31-50, 1988, doi: 10.1016/0022-3093(88)90005-1

[29] A. J. Lecloux, J. P. Pirard, “High-temperature catalysts through sol-gel synthesis”, J. Non. Cryst. Solids, vol. 225, pp. 146-152, 1998, doi: 10.1016/S0022-3093(98)00034-9

[30] D. Dutoit, M. Scheneider, A. Baiker, “Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties”, J. Catal., vol. 153, no. 1, pp. 165-176, 1995, doi: 10.1006/jcat.1995.1118

[31] W. G. Cortés Ortiz, A. Baena Novoa, C. A. Guerrero Fajardo, “Structuring-agent role in physical and chemical properties of Mo/SiO2 catalysts by sol-gel method”, J. Sol-Gel Sci. Technol., vol. 89, no. 2, pp. 416-425, 2019, doi: 10.1007/s10971-018-4892-7

[32] J. Geus, “Production of Supported Catalysts by Impregnation and (Viscous) Drying”, en Catalyst Preparation Science and Engineering, 2007, pp. 341-370, doi: 10.1201/9781420006506

[33] P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 1”, Trans. Faraday Soc., vol. 63, pp. 1801-1806, 1967, doi: 10.1016/j.leukres.2014.12.005

[34] P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 2”, Trans. Faraday Soc., vol. 63, pp. 1807-1814, 1967, doi: 10.1039/TF9676301807

[35] P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 3”, Trans. Faraday Soc., vol. 63, pp. 1815-1823, 1967, doi: 10.1039/TF9676301815

[36] S. Lee, R. Aris, “The Distribution of Active ingredients in Supported Catalysts Prepared by Impregnation”, Catal. Rev. Sci. Eng., vol. 27, no. 2, pp. 207-340, 1985, doi: 10.1080/01614948508064737

[37] E. Gaigneaux, D. De Vos, P. Jacobs, J. Martens, Scientific Bases for the Preparation of Heterogeneous Catalysts. Belgica: Elsevier science, 2002.

[38] J. Richardson, J. Harker, “Crystallisation”, en Coulson and Richardson’s Chemical Engineering, 5th ed., Oxford, Reino Unido: Elsevier science, 2002, pp. 827-897, doi: 10.1016/b978-0-08-101096-9.09001-4

[39] M. Ai, “Catalytic activity for the oxidation of methanol and the acid-base properties of metal oxides”, J. Catal., vol. 54, no. 3, pp. 426-435, Oct. 1978, doi: 10.1016/0021-9517(78)90090-8

[40] N. Pernicone, F. Lazzerin, G. Liberti, G. Lanzavecchia, “On the mechanism of CH3OH oxidation to CH2O over MoO3-Fe2(MoO4)3 catalyst”, J. Catal., vol. 14, no. 4, pp. 293-302, Aug. 1969, doi: 10.1016/0021-9517(69)90319-4

[41] D. Delgado et al., “Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol”, Eur. J. Inorg. Chem., vol. 2018, no. 10, pp. 1204-1211, 2018, doi: 10.1002/ejic.201800059

[42] R. M. Navarro, M. A. Peña, J. L. G. Fierro, “Methane Oxidation on Metal Oxides”, en Metal Oxides Chemistry and Applications, J. L. G. Fierro, Ed. New York, NY, USA: Taylor& Francis Group, 2006, pp. 463-482.

[43] J. M. Tatibouët, “Methanol oxidation as a catalytic surface probe”, Appl. Catal. A Gen., vol. 148, no. 2, pp. 213-252, 1997, doi: 10.1016/S0926-860X(96)00236-0

[44] H. Hu, I. E. Wachs, “Catalytic properties of supported molybdenum oxide catalysts: In situ Raman and methanol oxidation studies”, J. Phys. Chem., vol. 99, no. 27, pp. 10911-10922, 1995, doi: 10.1021/j100027a035

[45] Y. C. Liu, G. L. Griffin, S. S. Chan, I. E. Wachs, “Photo-oxidation of methanol using MoO3TiO2: Catalyst structure and reaction selectivity”, J. Catal., vol. 94, no. 1, pp. 108-119, 1985, doi: 10.1016/0021-9517(85)90086-7

[46] J. S. Chung, R. Miranda, C. O. Bennett, “Mechanism of partial oxidation of methanol over MoO3”, J. Catal., vol. 114, no. 2, pp. 398-410, Dec. 1988, doi: 10.1016/0021-9517(88)90043-7

[47] I. E. Wachs, G. Deo, M. V. Juskelis, B. M. Weckhuysen, “Methanol oxidation over supported vanadium oxide catalysts: New fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics”, Stud. Surf. Sci. Catal., vol. 109, pp. 305-314, Jan. 1997, doi: 10.1016/S0167-2991(97)80417-X

[48] W. G. Cortés Ortiz et al., “Partial oxidation of methane and methanol on FeOx- , MoOx- and FeMoOx -SiO 2 catalysts prepared by sol-gel method : A comparative study”, Mol. Catal., vol. 491, no. February, pp. 110982, 2020, doi: 10.1016/j.mcat.2020.110982

[49] G. S. Parkinson, “Iron oxide surfaces”, Surf. Sci. Rep., vol. 71, no. 1, pp. 272-365, Mar. 2016, doi: 10.1016/j.surfrep.2016.02.001

[50] B. M. Weckhuysen, D. E. Keller, “Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis”, Catal. Today, vol. 78, pp. 25-46, 2003, doi: 10.1016/S0920-5861(02)00323-1

[51] L. Kong et al., “Green and rapid synthesis of iron molybdate catalyst by mechanochemistry and their catalytic performance for the oxidation of methanol to formaldehyde”, Chem. Eng. J., vol. 364, pp. 390-400, May 2019, doi. 10.1016/J.CEJ.2019.01.164

[52] B. R. Yeo et al., “The surface of iron molybdate catalysts used for the selective oxidation of methanol”, Surf. Sci., vol. 648, pp. 163-169, 2016, doi: 10.1016/j.susc.2015.11.010

[53] M. Brown, N. Parkyns, “Progress in the partial oxidation of methane to methanol and formaldehyde”, Catal. Today, vol. 8, pp. 305-335, 1991, doi: 10.1016/0920-5861(91)80056-F

[54] V. Arutyunov, “Direct Methane to Methanol : Historical and Kinetics Aspects”, en Methanol: Science and Engineering, Oxford: Reino Unido: Elsevier B.V., 2018, pp. 129-172.