Vol. 20 Núm. 1 (2021): Revista UIS Ingenierías
Artículos

Preguntas orientadoras para la síntesis de catalizadores y su uso en reacciones de oxidación catalítica selectiva

William Giovanni Cortés-Ortiz
Universidad El Bosque
Carlos Guerrero-Fajardo
Universidad Nacional de Colombia

Publicado 2020-11-10

Palabras clave

  • catálisis heterogénea,
  • preguntas orientadoras,
  • oxidación selectiva,
  • metano,
  • metanol,
  • formaldehido,
  • sol-gel,
  • impregnación,
  • síntesis de catalizadores,
  • calcinación
  • ...Más
    Menos

Cómo citar

Cortés-Ortiz, W. G., & Guerrero-Fajardo, C. (2020). Preguntas orientadoras para la síntesis de catalizadores y su uso en reacciones de oxidación catalítica selectiva. Revista UIS Ingenierías, 20(1), 177–196. https://doi.org/10.18273/revuin.v20n1-2021016

Resumen

En el presente documento se presenta una breve historia de la catálisis, así como de los procesos de oxidación selectiva de hidrocarburos. Por otra parte, se mencionan los conceptos básicos involucrados en la catálisis heterogénea haciendo énfasis en el papel de los materiales catalíticos en procesos químicos de oxidación y planteando una serie de preguntas orientadoras que se deben seguir al momento de abordar un proceso catalizado por materiales sólidos. De la misma manera, se muestra los métodos de síntesis de catalizadores denominados en la literatura como sol-gel e impregnación, identificando la influencia de cada etapa de preparación con las propiedades físicas y químicas de los materiales. Finalmente, se presenta un caso de estudio aplicado a la oxidación catalítica selectiva de metano y metanol empleando materiales catalíticos de hierro, molibdeno y vanadio sintetizados por el método sol-gel.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] D. Burtron, “Development of the Science of Catalysis”, en Handbook of Heterogeneous Catalysis, Wiley, 2008, pp. 17-38, doi: 10.1002/9783527610044.hetcat0002

[2] G. Somorjai, “Surfaces - An introduction”, en Introduction to Surface Chemistry and Catalysis, 1st ed., Wiley, 1994, pp. 1-36.

[3] U. Nieken, O. Watzenberger, “Periodic operation of the Deacon process”, Chem. Eng. Sci., vol. 54, no. 13-14, pp. 2619-2626, Jul. 1999, doi: 10.1016/S0009-2509(98)00490-4

[4] M.-Á. Gómez-García, I. Dobrosz-Gómez, E. GilPavas, J. Rynkowski, “Simulation of an industrial adiabatic multi-bed catalytic reactor for sulfur dioxide oxidation using the Maxwell–Stefan model”, Chem. Eng. J., vol. 282, pp. 101-107, Dec. 2015, doi: 10.1016/J.CEJ.2015.02.013

[5] Y. H. Hu, E. Ruckenstein, “Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming”, Adv. Catal., vol. 48, pp. 297-345, Jan. 2004, doi: 10.1016/S0360-0564(04)48004-3

[6] V. Sadykov et al., “Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives”, Appl. Catal. A Gen., vol. 204, no. 1, pp. 59-87, 2000, doi: 10.1016/S0926-860X(00)00506-8

[7] A. Lattes, “De l’hydrogénation catalytique à la théorie chimique de la catalyse: Paul Sabatier, chimiste de génie, apôtre de la décentralisation”, Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem., vol. 3, no. 9, pp. 705-709, 2000, doi: 10.1016/S1387-1609(00)01184-1

[8] R. Zimdahl, “Nitrogen”, Six Chem. That Chang. Agric., Colorado, CO, USA: Elsevier, 2015, pp. 55-72.

[9] J. M. López Nieto, B. Solsona, "Gas phase heterogeneous partial oxidation reactions", Metal Oxides in Heterogeneous Catalysis, pp. 211-286, 2018, doi: 10.1016/B978-0-12-811631-9.00005-3

[10] R. K. Grasselli, “Fundamental principles of selective heterogeneous oxidation catalysis”, Top. Catal., vol. 21, no. 1-3, pp. 79-88, 2002, doi: 10.1023/A:1020556131984

[11] P. Mars, D. W. Van Krevelen, “Oxidations carried out by means of vanadium oxide catalysts”, Chem. Eng. Sci., vol. 3, pp. 41-59, 1954, doi: 10.1016/S0009-2509(54)80005-4

[12] B. M. Reddy, “Redox Properties of Metal Oxides”, en Metal Oxides: Chemistry and Applications, Boca Raton, FL, USA: CRC Press Taylor & Francis, 2005, pp. 215-246.

[13] B. K. Hodnett, Heterogeneous Catalytic Oxidation. London, United Kingdom: John Wiley & Sons Inc., 2000.

[14] A. J. Medford et al., “From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis”, Journal of Catalysis, vol. 328, pp. 36-42, 2015, doi: 10.1016/j.jcat.2014.12.033

[15] S. P. S. Andrew, “Theory and practice of the formulation of heterogeneous catalysts”, Chem. Eng. Sci., vol. 36, no. 9, pp. 1431-1445, 1981, doi: 10.1016/0009-2509(81)85106-8

[16] C. Perego, P. Villa, “Catalyst preparation methods”, Catal. Today, vol. 34, pp. 281-305, 1997, doi: 10.1016/S0920-5861(96)00055-7

[17] B. Heinrichs, S. Lambert, N. Job, J. P. Pirard, “Sol-Gel Synthesis of Supported Metals”, en Catalyst Preparation Science and Engineering, Boca Raton, FL, USA: CRC Press,Taylor& Francis Group, 2007, pp. 163-208.

[18] N. R. Hunter, H. D. Gesser, L. A. Morton, P. S. Yarlagadda, “Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane”, Appl. Catal., vol. 57, pp. 45-54, 1990, doi: 10.1016/S0166-9834(00)80722-8

[19] S. Teichner, G. Gardes, “Methods for the Manufacture of Composite Catalysts Containing a Composition of a Transition Metal on a Support”, US3963646A.

[20] M. Astier et al., “Preparation and Catalytic Properties of Supported Metal or Metal-Oxide on Inorganic Oxide Aerogels”, Stud. Surf. Sci. Catal., vol. 1, no. 3, pp. 315-330, 1976, doi: 10.1016/S0167-2991(08)63961-0

[21] S. Kistler, “Coherent Expanded-Aerogels”, J. Phys. Chem., vol. 36, no. 1, pp. 52-64, 1931, doi: 10.1021/j150331a003

[22] A. Kaiser, C. Gorsmann, C. Schubert, “Influence of the Metal Complexation on Size and Composition of Cu/Ni Nano-Particles Prepared by Sol-Gel Processing”, J. Sol-Gel Sci. Technol., vol. 8, no. 1-3, pp. 795–799, 1997, doi: 10.1007/BF02436940

[23] B. Heinrichs, F. Noville, J. P. Pirard, “Pd/SiO2-cogelled aerogel catalysts and impregnated aerogel and xerogel catalysts: Synthesis and characterization”, J. Catal., vol. 170, no. 2, pp. 366-376, 1997, doi: 10.1006/jcat.1997.1772

[24] S. Lambert, C. Cellier, P. Grange, J. P. Pirard, B. Heinrichs, “Synthesis of Pd/SiO2, Ag/SiO2, and Cu/SiO 2 cogelled xerogel catalysts: Study of metal dispersion and catalytic activity”, J. Catal., vol. 221, no. 2, pp. 335-346, 2004, doi: 10.1016/j.jcat.2003.07.014

[25] C. J. Brinker, G. Scherer, Sol-Gel Science The Physics and Chemistry of Sol–Gel Processing. San Diego, CA, USA: Academy Press.Inc, 1990.

[26] D. Ward, E. Ko, “Preparing Catalytic Materials by the Sol-Gel Method”, Ind. Eng. Chem. Res., vol. 34, no. 2, pp. 421-433, 1995, doi: 10.1021/ie00041a001

[27] M. Schneider, A. Baiker, “Titania-based aerogels”, Catal. Today, vol. 35, pp. 339-365, 1997, doi: 10.1016/S0920-5861(96)00164-2

[28] C. J. Brinker, “Hydrolysis and condensation of silicates: Effects on structure”, J. Non. Cryst. Solids, vol. 100, no. 1-3, pp. 31-50, 1988, doi: 10.1016/0022-3093(88)90005-1

[29] A. J. Lecloux, J. P. Pirard, “High-temperature catalysts through sol-gel synthesis”, J. Non. Cryst. Solids, vol. 225, pp. 146-152, 1998, doi: 10.1016/S0022-3093(98)00034-9

[30] D. Dutoit, M. Scheneider, A. Baiker, “Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties”, J. Catal., vol. 153, no. 1, pp. 165-176, 1995, doi: 10.1006/jcat.1995.1118

[31] W. G. Cortés Ortiz, A. Baena Novoa, C. A. Guerrero Fajardo, “Structuring-agent role in physical and chemical properties of Mo/SiO2 catalysts by sol-gel method”, J. Sol-Gel Sci. Technol., vol. 89, no. 2, pp. 416-425, 2019, doi: 10.1007/s10971-018-4892-7

[32] J. Geus, “Production of Supported Catalysts by Impregnation and (Viscous) Drying”, en Catalyst Preparation Science and Engineering, 2007, pp. 341-370, doi: 10.1201/9781420006506

[33] P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 1”, Trans. Faraday Soc., vol. 63, pp. 1801-1806, 1967, doi: 10.1016/j.leukres.2014.12.005

[34] P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 2”, Trans. Faraday Soc., vol. 63, pp. 1807-1814, 1967, doi: 10.1039/TF9676301807

[35] P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 3”, Trans. Faraday Soc., vol. 63, pp. 1815-1823, 1967, doi: 10.1039/TF9676301815

[36] S. Lee, R. Aris, “The Distribution of Active ingredients in Supported Catalysts Prepared by Impregnation”, Catal. Rev. Sci. Eng., vol. 27, no. 2, pp. 207-340, 1985, doi: 10.1080/01614948508064737

[37] E. Gaigneaux, D. De Vos, P. Jacobs, J. Martens, Scientific Bases for the Preparation of Heterogeneous Catalysts. Belgica: Elsevier science, 2002.

[38] J. Richardson, J. Harker, “Crystallisation”, en Coulson and Richardson’s Chemical Engineering, 5th ed., Oxford, Reino Unido: Elsevier science, 2002, pp. 827-897, doi: 10.1016/b978-0-08-101096-9.09001-4

[39] M. Ai, “Catalytic activity for the oxidation of methanol and the acid-base properties of metal oxides”, J. Catal., vol. 54, no. 3, pp. 426-435, Oct. 1978, doi: 10.1016/0021-9517(78)90090-8

[40] N. Pernicone, F. Lazzerin, G. Liberti, G. Lanzavecchia, “On the mechanism of CH3OH oxidation to CH2O over MoO3-Fe2(MoO4)3 catalyst”, J. Catal., vol. 14, no. 4, pp. 293-302, Aug. 1969, doi: 10.1016/0021-9517(69)90319-4

[41] D. Delgado et al., “Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol”, Eur. J. Inorg. Chem., vol. 2018, no. 10, pp. 1204-1211, 2018, doi: 10.1002/ejic.201800059

[42] R. M. Navarro, M. A. Peña, J. L. G. Fierro, “Methane Oxidation on Metal Oxides”, en Metal Oxides Chemistry and Applications, J. L. G. Fierro, Ed. New York, NY, USA: Taylor& Francis Group, 2006, pp. 463-482.

[43] J. M. Tatibouët, “Methanol oxidation as a catalytic surface probe”, Appl. Catal. A Gen., vol. 148, no. 2, pp. 213-252, 1997, doi: 10.1016/S0926-860X(96)00236-0

[44] H. Hu, I. E. Wachs, “Catalytic properties of supported molybdenum oxide catalysts: In situ Raman and methanol oxidation studies”, J. Phys. Chem., vol. 99, no. 27, pp. 10911-10922, 1995, doi: 10.1021/j100027a035

[45] Y. C. Liu, G. L. Griffin, S. S. Chan, I. E. Wachs, “Photo-oxidation of methanol using MoO3TiO2: Catalyst structure and reaction selectivity”, J. Catal., vol. 94, no. 1, pp. 108-119, 1985, doi: 10.1016/0021-9517(85)90086-7

[46] J. S. Chung, R. Miranda, C. O. Bennett, “Mechanism of partial oxidation of methanol over MoO3”, J. Catal., vol. 114, no. 2, pp. 398-410, Dec. 1988, doi: 10.1016/0021-9517(88)90043-7

[47] I. E. Wachs, G. Deo, M. V. Juskelis, B. M. Weckhuysen, “Methanol oxidation over supported vanadium oxide catalysts: New fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics”, Stud. Surf. Sci. Catal., vol. 109, pp. 305-314, Jan. 1997, doi: 10.1016/S0167-2991(97)80417-X

[48] W. G. Cortés Ortiz et al., “Partial oxidation of methane and methanol on FeOx- , MoOx- and FeMoOx -SiO 2 catalysts prepared by sol-gel method : A comparative study”, Mol. Catal., vol. 491, no. February, pp. 110982, 2020, doi: 10.1016/j.mcat.2020.110982

[49] G. S. Parkinson, “Iron oxide surfaces”, Surf. Sci. Rep., vol. 71, no. 1, pp. 272-365, Mar. 2016, doi: 10.1016/j.surfrep.2016.02.001

[50] B. M. Weckhuysen, D. E. Keller, “Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis”, Catal. Today, vol. 78, pp. 25-46, 2003, doi: 10.1016/S0920-5861(02)00323-1

[51] L. Kong et al., “Green and rapid synthesis of iron molybdate catalyst by mechanochemistry and their catalytic performance for the oxidation of methanol to formaldehyde”, Chem. Eng. J., vol. 364, pp. 390-400, May 2019, doi. 10.1016/J.CEJ.2019.01.164

[52] B. R. Yeo et al., “The surface of iron molybdate catalysts used for the selective oxidation of methanol”, Surf. Sci., vol. 648, pp. 163-169, 2016, doi: 10.1016/j.susc.2015.11.010

[53] M. Brown, N. Parkyns, “Progress in the partial oxidation of methane to methanol and formaldehyde”, Catal. Today, vol. 8, pp. 305-335, 1991, doi: 10.1016/0920-5861(91)80056-F

[54] V. Arutyunov, “Direct Methane to Methanol : Historical and Kinetics Aspects”, en Methanol: Science and Engineering, Oxford: Reino Unido: Elsevier B.V., 2018, pp. 129-172.