Academy, data and science reproducibility
Published 2020-06-30
Keywords
- reproducibility,
- open science,
- data repositories,
- open access
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The COVID-19 pandemic has catalyzed several academic practices, and when it ends, the geography and especially the dynamics of research groups will be completely different. We will have other practices, and, in many cases, we will be more effective. Perhaps the most indelible feature of that change will be the day-to-day incorporation of open, repeatable, and replicable science practices. The qualitative change from research to “e-research” describes a new way to produce and disseminate knowledge. It also imposes new methodologies to manage, administer, analyze and preserve this “data deluge”. The repeatability and reproducibility of scientific results in data-centred science become a growing and significant issue. Undoubtedly, academic publications should be transformed, demanding open access to data and direct availability to computer codes and applications that support the results. In this editorial, we comment and reflect on some of the methodologies and tools available to promote the repeatability/reproducibility of experiments.
Downloads
References
[2] L. Núñez, “La reconquista digital de la biblioteca pública,” Interciencia, vol. 27, no. 4, pp. 195– 201, 2002.
[3] P. Ginsparg, “Arxiv at 20,” Nature, vol. 476, no. 7359, pp. 145–147, 2011.
[4] M. Castells, The Rise of the Network Society. Cambridge, MA, USA: Blackwell Publishers, Inc., 2000.
[5] M. Castells, The Internet Galaxy. Oxford UK: Oxford University Press, 2001, doi: 10.1093/acprof:oso/9780199255771.001.0001
[6] M. Nielsen, Reinventing Discovery: The New Era of Networked Science. Princeton University Press, Oct. 2011.
[7] L. A. Núñez, “Ciencia abierta y de datos: retos y realidades,” Deslinde, vol. 58, pp. 69–75, 2015.
[8] T. Hey, A. E. Trefethen, “e-science and its implications,” Phil. Trans. R. Soc. Lond. A, vol. 361, pp. 1809–1825, 2003.
[9] I. Foster, “Service-oriented science,” Science, vol. 308, pp. 814–817, May 2005.
[10] T. Hey, A. E. Trefethen, “Cyberinfrastructure for e-science,” Science, vol. 308, pp. 817–821, May 2005.
[11] R. Barbera, B. Becker, C. Carrubba, G. Inserra, S. Jalife-Villalón, C. Kanellopoulos, K. Koumantaros, R. Mayo-García, L. Núñez, O. Prnjat, R. Ricceri, M. Rodriguez-Pascual, A. Rubio Montero, F. Ruggieri, “Chain-reds dart challenge,” in IV Conferência Internacional sobre Bibliotecas e Repositórios Digitais (BIREDIAL) y IX Simpósio Internacional de Bibliotecas Digitais (SIBD)(Porto Alegre, Brasil, 2014), 2014.
[12] M. Baker, “Reproducibility crisis,” Nature, vol. 533, no. 26, pp. 353–66, 2016.
[13] J. Berg, “Progress on reproducibility,” Science, vol. 359, no. 6371, pp. 9–9, 2018, doi: 10.1126/science.aar8654
[14] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol. 533, no. 7604, pp. 452–454, May 2016, doi:10.1038/533452a
[15] National Academies of Sciences, Engineering, and Medicine, Reproducibility and Replicability in Science. Washington, DC: The National Academies Press, 2019, doi: 10.17226/25303
[16] B. Arnold, L. Bowler, S. Gibson, P. Herterich, R. Higman, A. Krystalli, A. Morley, M. O’Reilly, K. Whitaker, Community The Turing Way, The Turing Way: A Handbook for Reproducible Data Science. Zenodo, Mar. 2019. [Online]. Available: https://zenodo.org/record/3233986
[17] A. de Waard, H. Cousijn, I. J. Aalbersberg, “10 aspects of highly effective research data,” Elsevier Connect, Dec. 2015. [Online]. Available: https://www.elsevier.com/connect/ 10-aspects-of-highly-effective-research-data
[18] M. D. Wilkinson, et al., “The FAIR Guiding Principles for scientific data management and stewardship,” Scientific Data, vol. 3, no. 1, p. 160018, Dec. 2016, doi: 10.1038/sdata.2016.18
[19] J. Gray, A. Szalay, “The world-wide telescope,” Commun. ACM, vol. 45, no. 11, pp. 50–55, 2002.
[20] H. Karasti, K. Baker, E. Halkola, “Enriching the notion of data curation in e-science: Data managing and information infrastructuring in the long term ecological research (lter) network,” Computer Supported Cooperative Work (CSCW), vol. 15, no. 4, pp. 321–358, August 2006, doi: 10.1007/s10606-006-9023-2
[21] W. Haak, “4 principles for unlocking the full potential of research data,” Elsevier Connect, Mar. 2019. [Online]. Available: https://www.elsevier.com/connect/ 4-principles-for-unlocking-the-full-potential-of-research-data# contributors
[22] R. Delevante, “5 trends in research data management,” Elsevier Connect, Sep. 2019. [Online]. Available: https://www.elsevier.com/connect/ 5-trends-in-research-data-management
[23] L. Willems, “6 insights from leading universities on managing research data effectively,” Elsevier Connect, Apr. 2019. [Online]. Available: https://www.elsevier.com/connect/ 6-insights-from-leading-universities-on-managing-research-data-effectively
[24] M. van der Graaf, L. Waaijers, “A Surfboard for Riding the Wave. Towards a four country action programme on research data. A Knowledge Exchange Report,” Tech. Rep., Nov. 2011. [Online]. Available: https://libereurope.eu/ a-surfboard-for-riding-the-wave-towards-a-four-country-action-programme-on-research-data/
[25] B. Centre for Science and Technology Studies (CWTS), “Open data: The researcher perspective,” Tech. Rep., Apr. 2017. [Online]. Available: https://www.elsevier.com/__data/assets/pdf_file/0004/281920/Open-data-report.pdf
[26] M. Crosas, “The dataverse network: an opensource application for sharing, discovering and preserving data,” D-lib Magazine, vol. 17, no. 1, p. 2, 2011
[27] Dataverse, “Sitio oficial,” 2018. [Online]. Available: https://dataverse.org/
[28] K. Nowak, “Zenodo - research. shared. second part of the open research data in h2020 & zenodo repository"webinar.” Oct 2016.
[29] Zenodo, “Zenodo’s infrastructure,” 2018. [Online]. Available: http://about.zenodo.org/ infrastructure/
[30] DSpace, “Sitio oficial,” 2018. [Online]. Available: https://dspace.org/
[31] OpenDOAR, “The directory of open access repositories,” 2018. [Online]. Available: http:www.opendoar.org
[32] J. Lasser, “Creating an executable paper is a journey through open science,” Communications Physics, vol. 3, no. 1, pp. 1–5, 2020, doi: 10.1038/s42005-020-00403-4
[33] N. Vasilevsky, J. Minnier, M. Haendel, R. Champieux, “Reproducible and reusable research: are journal data sharing policies meeting the mark?,” PeerJ, vol. 5, p. e3208, 2017, doi: 10.7717/peerj.3208
[34] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, “Jupyter notebooks-a publishing format for reproducible computational workflows,” in ELPUB, pp. 87–90, 2016, doi: 10.3233/978-1-61499-649-1-87
[35] “Declaración de Panamá sobre Ciencia Abierta,” Dec. 2018. [Online]. Available: https: //web.karisma.org.co/wp-content/uploads/ download-manager-files/declaracion_ panama_ciencia_abierta.pdf
[36] H. Asorey, L. Núñez, C. Sarmiento-Cano, “Exposición temprana de nativos digitales en ambientes, metodologías y técnicas de investigación en la universidad,” Revista Brasileira de Ensino de Física, vol. 40, no. 4, 2018m doi: 10.1590/1806-9126-rbef-2018-0092
[37] R. Mayo-García, L. Nuñez, H. Asorey, M. Rodriguez-Pascual, D. Cazar Ramirez, L. A. Torres-Nino, “Data Accessibility, Reproducibility and Trustworthiness with LAGO Data Repositories,” in Proceedings of The 34th International Cosmic Ray Conference — PoS(ICRC2015), 2016, p. 672, doi: 10.22323/1.236.0672
[38] E. Barrios, R. Torréns, L. Torres, L. Núñez, “Implementación de un repositorio de datos científicos usando dspace,” 2011. [Online]. Available: http://repository.urosario.edu.co/handle/10336/2465