Vol. 21 No. 4 (2022): Revista UIS Ingenierías
Articles

Optimal integration of solar photovoltaic generation in distribution networks to minimize the total annual operating costs by applying the Black Widow algorithm

Camilo Andrés Rojas-Torres
Universidad Distrital Francisco José de Caldas
Ivan Camilo Tovar-Cifuentes
Universidad Distrital Franscisco José de Caldas
Oscar Danilo Montoya Giraldo
Universidad Distrital Francisco José de Caldas
Brandon Cortés-Caicedo
Instituto Tecnológico Metropolitano
3D

Published 2022-11-17

Keywords

  • Black widow optimization algorithm,
  • Solar renewable energy,
  • dispersed generation,
  • annual operative costs minimization,
  • distribution energy systems,
  • discrete-continuous coding,
  • masterslave strategy,
  • power flow,
  • successive approximations method,
  • combinatorial optimization,
  • net present value
  • ...More
    Less

How to Cite

Rojas-Torres, C. A., Tovar-Cifuentes , I. C., Montoya Giraldo, O. D., & Cortés-Caicedo, B. (2022). Optimal integration of solar photovoltaic generation in distribution networks to minimize the total annual operating costs by applying the Black Widow algorithm. Revista UIS Ingenierías, 21(4), 71–86. https://doi.org/10.18273/revuin.v21n4-2022007

Abstract

The problem of the optimal location and sizing of photovoltaic (PV) sources in electrical distribution systems is addressed in this article through the application of the black widow optimization algorithm (BWOA). This problem is of mixed-integer nonlinear nature and is addressed by a master-slave type optimization strategy. In the master stage, the BWOA defines the location and size of the PV generators through discrete-continuous coding, and with this information, the slave stage (power flow for distribution) determines the electrical variables of the system, with which is evaluated the objective function and the constraints of the problem. As an objective function, the minimization of the annual costs of operation and maintenance of the system is considered, added to the total costs of purchasing energy in the electrical network for a planning period of 20 years. The numerical results in the IEEE 34- and IEEE 85-node systems show that with the proposed optimization methodology it is possible to reduce around 27% of the annual operating costs in both systems with the optimal location of three photovoltaic sources. Comparisons with metaheuristics and exact methodologies reported in the specialized literature confirm the efficiency and robustness of the proposed methodology.

Downloads

Download data is not yet available.

References

  1. O. D. Montoya, W. Gil-González, “On the numerical analysis based on successive approximations for power flow problems in AC distribution systems,” Electr. Power Syst. Res., vol. 187, p. 106454, 2020, doi: http://doi.org.10.1016/j.epsr.2020.106454
  2. F. Xue, Y. Xu, H. Zhu, S. Lu, T. Huang, J. Zhang, “Structural Evaluation for Distribution Networks with Distributed Generation Based on Complex Network,” Complexity, vol. 2017, pp. 1–10, 2017, doi: http://doi.org.10.1155/2017/7539089
  3. J. A. Taylor, F. S. Hover, “Convex Models of Distribution System Reconfiguration,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1407–1413, 2012, doi: http://doi.org.10.1109/TPWRS.2012.2184307
  4. R. Pegado, Z. Ñaupari, Y. Molina, C. Castillo, “Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO,” Electr. Power Syst. Res., vol. 169, pp. 206–213, 2019, doi: http://doi.org.10.1016/j.epsr.2018.12.030
  5. W. M. V. Acevedo, J. M. Rendón, J. M. López-Lezama, “Evaluación del impacto de la generación distribuida en la red de transmisión,” Rev. Colomb. Tecnol. Av., vol. 3, no. Especial, pp. 72–79, 2020.
  6. M. A. Tawhid, P. Savsani, “Discrete Sine-Cosine Algorithm (DSCA) with Local Search for Solving Traveling Salesman Problem,” Arab. J. Sci. Eng., vol. 44, no. 4, pp. 3669–3679, 2019, doi: http://doi.org.10.1007/s13369-018-3617-0
  7. O. D. Montoya, E. Rivas-Trujillo, J. C. Hernández, “A Two-Stage Approach to Locate and Size PV Sources in Distribution Networks for Annual Grid Operative Costs Minimization,” Electronics, vol. 11, no. 6, p. 961, 2022, doi: http://doi.org.10.3390/electronics11060961
  8. K. M. Muttaqi, A. D. T. Le, J. Aghaei, E. Mahboubi-Moghaddam, M. Negnevitsky, G. Ledwich, “Optimizing distributed generation parameters through economic feasibility assessment,” Appl. Energy, vol. 165, pp. 893–903, 2016, doi: http://doi.org.10.1016/j.apenergy.2016.01.006
  9. UPME, “Plan Energético Nacional 2020--2050.” Unidad de Planeación Minero Energética, Ministerio de Minas y Energía Bogotá, 2019.
  10. F. R. Torres Fernández, “Análisis del marco normativo del sector eléctrico colombiano, impactos en la regulación eléctrica de la ley 1715 de 2014,” Ing. Eléctrica, 2016.
  11. J. Gómez Ramírez, “La energía solar fotovoltaica en Colombia: potenciales, antecedentes y perspectivas,” 2017.
  12. A. G. de Souza, “Óptima ubicación y dimensionamiento de D-STATCOM para la compensación de potencia reactiva en redes de distribución considerando la incidencia de armónicos.,” 2018.
  13. O. D. Montoya, L. F. Grisales-Noreña, A.J. Perea-Moreno, “Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm,” Sustainability, vol. 13, no. 24, p. 13633, 2021, doi: http://doi.org.10.3390/su132413633
  14. C. G. Arbeláez, “El acuerdo de parís: Así actuará Colombia frente al cambio climático,” 2016.
  15. “Plan de expansión de referencia generación - transmisión 2019 - 2033 - UPME (Unidad De Planeación Minero-Energética),” 2019.
  16. O. D. Montoya, A. Molina-Cabrera, H. R. Chamorro, L. Alvarado-Barrios, E. Rivas-Trujillo, “A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks,” Electronics, vol. 10, no. 1, p. 26, 2020, doi: http://doi.org.10.3390/electronics10010026
  17. T. R. Ayodele, A. S. O. Ogunjuyigbe, O. O. Akinola, “Optimal Location, Sizing, and Appropriate Technology Selection of Distributed Generators for Minimizing Power Loss Using Genetic Algorithm,” J. Renew. Energy, vol. 2015, pp. 1–9, 2015, doi: http://doi.org.10.1155/2015/832917
  18. A. Paz-Rodríguez, J. F. Castro-Ordoñez, O. D. Montoya, D. A. Giral-Ramírez, “Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm,” Appl. Sci., vol. 11, no. 10, p. 4418, 2021, doi: http://doi.org.10.3390/app11104418
  19. P. Wang, W. Wang, D. Xu, “Optimal Sizing of Distributed Generations in DC Microgrids With Comprehensive Consideration of System Operation Modes and Operation Targets,” IEEE Access, vol. 6, pp. 31129–31140, 2018, doi: http://doi.org.10.1109/ACCESS.2018.2842119
  20. S. Sultana, P. K. Roy, “Krill herd algorithm for optimal location of distributed generator in radial distribution system,” Appl. Soft Comput., vol. 40, pp. 391–404, 2016, doi: http://doi.org.10.1016/j.asoc.2015.11.036
  21. O. D. Montoya, L. F. Grisales-Noreña, L. Alvarado-Barrios, A. Arias-Londoño, C. Álvarez-Arroyo, “Efficient Reduction in the Annual Investment Costs in AC Distribution Networks via Optimal Integration of Solar PV Sources Using the Newton Metaheuristic Algorithm,” Appl. Sci., vol. 11, no. 23, p. 11525, 2021, doi: http://doi.org.10.3390/app112311525
  22. O. D. Montoya, L. F. Grisales-Noreña, D. A. Giral-Ramírez, “Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer,” Sustainability, vol. 14, no. 6, p. 3318, 2022, doi: http://doi.org.10.3390/su14063318
  23. B. Cortés-Caicedo, F. Molina-Martin, L. F. Grisales-Noreña, O. D. Montoya, J. C. Hernández, “Optimal Design of PV Systems in Electrical Distribution Networks by Minimizing the Annual Equivalent Operative Costs through the Discrete-Continuous Vortex Search Algorithm,” Sensors, vol. 22, no. 3, p. 851, 2022, doi: http://doi.org.10.3390/s22030851
  24. M. A. Mosa, A. A. Ali, “Energy management system of low voltage dc microgrid using mixed-integer nonlinear programing and a global optimization technique,” Electr. Power Syst. Res., vol. 192, p. 106971, 2021, doi: http://doi.org.10.1016/j.epsr.2020.106971
  25. H. Saboori, R. Hemmati, “Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators,” Renew. Sustain. Energy Rev., vol. 71, pp. 365–372, 2017, doi: http://doi.org.10.1016/j.rser.2016.12.066
  26. O. D. Montoya, W. Gil-González, A. Molina-Cabrera, “Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources,” Dyna, vol. 88, no. 217, pp. 178–184, 2021.
  27. X. Chen, Z. Li, W. Wan, L. Zhu, Z. Shao, “A master–slave solving method with adaptive model reformulation technique for water network synthesis using MINLP,” Purif. Technol., vol. 98, pp. 516–530, 2012, doi: http://doi.org.10.1016/j.seppur.2012.06.039
  28. V. Hayyolalam, A. A. Pourhaji Kazem, “Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems,” Eng. Appl. Artif. Intell., vol. 87, p. 103249, 2020, doi: http://doi.org.10.1016/j.engappai.2019.103249
  29. O. D. Montoya, A. Molina-Cabrera, J. C. Hernández, “A Comparative Study on Power Flow Methods Applied to AC Distribution Networks with Single-Phase Representation,” Electronics, vol. 10, no. 21, p. 2573, 2021, doi: http://doi.org.10.3390/electronics10212573
  30. A. Hosseinalipour, F. Soleimanian Gharehchopogh, M. Masdari, Al. Khademi, “An Optimization-based Learning Black Widow Optimization Algorithm for Text Psychology,” J. Adv. Comput. Eng. Technol., vol. 7, no. 1, pp. 81–92, 2021.
  31. “O. Investments, in PV, S. for, G.-C. Distribution, N. an, A. of the Discrete-Continuous, Genetic, and Algorithm,” IEEE, 2021.
  32. M. C. Vélez, J. A. Montoya, “Metaheurísticos: una alternativa para la solución de problemas combinatorios en administración de operaciones,” Rev. EIA, no. 8, pp. 99–115, 2007.
  33. R. Roshan, R. Porwal, C. M. Sharma, “Review of search-based techniques in software testing,” Int. J. Comput. Appl., vol. 51, no. 6, 2012.
  34. M. Harman, Y. Jia, Y. Zhang, “Achievements, Open Problems and Challenges for Search Based Software Testing,” in 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), 2015, pp. 1–12, doi: http://doi.org.10.1109/ICST.2015.7102580
  35. D. Zhang, Z. Fu, L. Zhang, “An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems,” Electr. Power Syst. Res., vol. 77, no. 5–6, pp. 685–694, 2007, doi: http://doi.org.10.1016/j.epsr.2006.06.005
  36. L. F. Grisales-Noreña, O. D. Montoya, C. A. Ramos-Paja, “An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm,” J. Energy Storage, vol. 29, p. 101488, 2020, doi: http://doi.org.10.1016/j.est.2020.101488
  37. C. M. Castiblanco-Pérez, D. E. Toro-Rodríguez, O. D. Montoya, D. A. Giral-Ramírez, “Optimal Placement and Sizing of D-STATCOM in Radial and Meshed Distribution Networks Using a Discrete-Continuous Version of the Genetic Algorithm,” Electronics, vol. 10, no. 12, p. 1452, 2021, doi: http://doi.org.10.3390/electronics10121452
  38. P. Wang, W. Wang, D. Xu, “Optimal sizing of distributed generations in dc microgrids with comprehensive consideration of system operation modes and operation targets,” IeEe Access, vol. 6, pp. 31 129–31 140, 2018.
  39. D. Prakash, C. Lakshminarayana, “Optimal siting of capacitors in radial distribution network using whale optimization algorithm,” Alexandria Engineering Journal, vol. 56, no. 4, pp. 499–509, 2017.