Pyrolysis of polyethylene terephthalate and polystyrene for the synthesis of carbon nanostructures: a bibliometric review
Published 2023-04-03
Keywords
- polyethylene terephthalate,
- polystyrene,
- pyrolysis,
- carbon nanotubes
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
This article presents a bibliometric review of the pyrolysis process of two types of polymers: polyethylene terephthalate (PET) and polystyrene (PS), to identify the necessary conditions to optimize the pyrolysis process, guaranteeing the majority production of the gaseous product with the aim of carrying out a second process, the growth of carbon nanostructures. Gaseous precursors such as methane, acetylene, and ethylene are essential hydrocarbons for the growth of said nanostructures, of which a variety of single-walled, double-walled, and multi-walled carbon nanotubes (SWCNTs, DWCNTs, and MWCNTs) stand out according to the literature and carbon nanofibers (CNFs). In this work, an analysis of the most relevant conditions is carried out to optimize the polymer pyrolysis process, that is, to reduce the temperature and reaction times to improve the composition of the products obtained from the pyrolytic process. Finally, the most relevant reports of the pyrolysis of the polymers exposed in the literature are disclosed.
Downloads
References
- F. Gao, “Pyrolysis of waste plastics into fuels,” tesis doctoral, University of Canterbury, Nueva Zelanda, 2010, Accessed: Sep. 23, 2022. [En línea]. Disponible en: https://sci-hub.ren/http://ir.canterbury.ac.nz/handle/10092/4303
- G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, M. Olazar, “Recent advances in the gasification of waste plastics. A critical overview,” Renew. Sustain. Energy Rev., vol. 82, pp. 576–596, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.032
- “Hoy en día se produce el doble de desechos plásticos en el mundo que hace 20 años.” https://www.larepublica.co/globoeconomia/hoy-en-dia-se-produce-el-doble-de-desechos-plasticos-en-el-mundo-que-hace-20-anos-3310507
- V. Sinha, M. R. Patel, and J. V. Patel, “Pet Waste Management by Chemical Recycling: A Review,” J. Polym. Environ, vol. 18, no. 1, pp. 8–25, Sep. 2008, doi: https://doi.org/10.1007/S10924-008-0106-7
- S. Al-Salem, A. Antelava, A. Constantinou, G. Manos, A. Dutta, S. Majed Sultan Al-Salem, “Una revisión sobre la pirólisis térmica y catalítica de residuos sólidos plásticos (PSW),” Rev. medioambiente, 2017, Accessed: Sep. 23, 2022, doi: https://doi.org/10.1016/j.jenvman.2017.03.084
- H. D. Lim et al., “Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode,” Adv. Mater., vol. 25, no. 9, pp. 1348–1352, 2013, doi: https://doi.org/10.1002/ADMA.201204018
- X. Zang, Q. Zhou, J. Chang, Y. Liu, and L. Lin, “Graphene and carbon nanotube (CNT) in MEMS/NEMS applications,” Microelectron. Eng., vol. 132, pp. 192–206, Jan. 2015, doi: https://doi.org/10.1016/J.MEE.2014.10.023
- R. Thahir, A. Altway, S. R. Juliastuti, and Susianto, “Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column,” Energy Reports, vol. 5, pp. 70–77, 2019, doi: https://doi.org/10.1016/J.EGYR.2018.11.004
- F. A. Gallegos, “Depolimerización de PET (tereftalato de polietileno) mediante bloqueo de escisión de cadena polimérica como alternativa para su reciclaje químico,” trabajo fin de curso, 2019. [En línea]. Disponible en: https://sci-hub.ren/http://repositorio.puce.edu.ec/handle/22000/16249
- K. R. Cardona, “Análisis del reciclaje químico como alternativa tecnológica para la valorización y disposición final de residuos plásticos post-consumo,” trabajo fin de programa, 2017. [En línea]. Disponible en: https://sci-hub.ren/https://repository.unimilitar.edu.co/handle/10654/16986
- Lens, “Lens Scholarly Search: PET pyrolysis.” [En línea]. Disponible en: https://www.lens.org/lens/search/scholar/list?q=PET%20pyrolysis&p=3&n=10&s=_score&d=%2B&f=false&e=false&l=en&authorField=author&dateFilterField=publishedDate&orderBy=%2B_score&presentation=false&preview=true&stemmed=true&useAuthorId=false&publishedDate.fr
- J. A. Conesa, A. Marcilla, R. Font, and J. A. Caballero, “Thermogravimetric studies on the thermal decomposition of polyethylene,” J. Anal. Appl. Pyrolysis, vol. 36, no. 1, pp. 1–15, Apr. 1996, doi: https://doi.org/10.1016/0165-2370(95)00917-5
- M. Castells, “Redes de indignación y esperanza,” 2012, Cuadernos de Geografía: Revista Colombiana de Geografía, [En línea]. Disponible en: https://sci-hub.ren/https://www.academia.edu/download/38935740/art31.pdf
- A. Demirbas, G. Arin, “Una visión general de la pirólisis de biomasa,” Energy Sources, vol. 24, no. 5, pp. 471-482, 2002, [En línea]. Disponible en: https://sci-hub.ren/https://www.tandfonline.com/doi/abs/10.1080/00908310252889979
- J. B. Mooney and S. B. Radding, “Spray pyrolysis processing.,” Annu. Rev. Mater. Sci., vol. 12, pp. 81–101, 1982, doi: https://doi.org/10.1146/ANNUREV.MS.12.080182.000501
- S. Kloss et al., “Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties,” J. Environ. Qual., vol. 41, no. 4, pp. 990–1000, 2012, doi: https://doi.org/10.2134/JEQ2011.0070
- F. L. Carrasquero, Fundamentos de polímeros. Universidad de los Andes: Merida, 2004. [En línea]. Disponible en: http://www.saber.ula.ve/bitstream/handle/123456789/16700/polimeros.pdf;jsessionid=00474486C6264FD54FB5C5BEE429C247?sequence=1
- I. J. Fernández, “Polímeros en solución y aplicación de los polímeros en la Industria petrolera”, reviberpol. [En línea]. Disponible en: https://reviberpol.files.wordpress.com/2019/08/previos-fernandez.pdf
- M. Beltrán Rico, A. Marcilla Gomis, Tecnología de polímeros. Publicaciones de la Universidad de Alicante: España, 2012.
- M. Sekar, V. Kumar, A. Pugazhendhi, S. Nižetić, T.R. Praveenkumar, “Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design,” vol. 302, doi: https://doi.org/10.1016/j.jenvman.2021.114046
- F. Billmeyer, Ciencia de los polímeros. Wiley: España, 2020.
- B. Amaya Pinos, “Obtención de combustibles a partir de Tereftalato de Polietileno (PET) a escala de laboratorio mediante procesos de pirólisis y gasificación,” trabajo fin de grado, Universidad Politécnica Salesiana, 2020.
- A. S. Figueroa-Infante, E. Fonseca-Santanilla, “Estudio de material reciclado para reparar fisuras y su aplicación en un pavimento en Bogotá,” Épsilon, vol. 24, 2015.
- G. P. Karayannidis, D. S. Achilias, “Chemical Recycling of Poly(ethylene terephthalate),” Macromol. Mater. Eng., vol. 292, no. 2, pp. 128–146, 2007, doi: https://doi.org/10.1002/mame.200600341
- S. Anuar Sharuddin, F. Abnisa, W. Wan Daud, M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Conversion and Management, vol. 115, pp. 308-326, 2016, doi: https://doi.org/10.1016/j.enconman.2016.02.037
- Y. Liu, J. Qian, J. Wang, “Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction,” Fuel Process. Technol., vol. 63, no. 1, pp. 45–55, 2000, doi: https://doi.org/10.1016/S0378-3820(99)00066-1
- Y. Sakata, M. A. Uddin, A. Muto, “Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts,” J. Anal. Appl. Pyrolysis, vol. 51, no. 1–2, pp. 135–155, 1999, doi: https://doi.org/10.1016/S0165-2370(99)00013-3
- J. M. Saad, M. A. Nahil, P. T. Williams, “Influence of process conditions on syngas production from the thermal processing of waste high density polyethylene,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 35–40, 2015, doi: https://doi.org/10.1016/J.JAAP.2014.09.027
- W. Kaminsky, J. S. Kim, “Pyrolysis of mixed plastics into aromatics,” J. Anal. Appl. Pyrolysis, vol. 51, no. 1–2, pp. 127–134, 1999, doi: https://doi.org/10.1016/S0165-2370(99)00012-1
- G. Elordi et al., “Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor,” J. Anal. Appl. Pyrolysis, vol. 85, no. 1–2, pp. 345–351, May 2009, doi: https://doi.org/10.1016/J.JAAP.2008.10.015
- K. Murthy, R. J. Shetty, and K. Shiva, “Plastic waste conversion to fuel: a review on pyrolysis process and influence of operating parameters,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, doi: https://doi.org/10.1080/15567036.2020.1818892
- J. M. Heikkinen, J. C. Hordijk, W. De Jong, H. Spliethoff, “Thermogravimetry as a tool to classify waste components to be used for energy generation,” J. Anal. Appl. Pyrolysis, vol. 71, no. 2, pp. 883–900, 2004, doi: https://doi.org/10.1016/J.JAAP.2003.12.001
- S. S. Park, D. K. Seo, S. H. Lee, T. U. Yu, J. Hwang, “Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor,” J. Anal. Appl. Pyrolysis, vol. 97, pp. 29–38, 2012, doi: https://doi.org/10.1016/J.JAAP.2012.06.009
- R. Miandad, M. A. Barakat, M. Rehan, A. S. Aburiazaiza, I. M. I. Ismail, and A. S. Nizami, “Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts,” Waste Manag., vol. 69, pp. 66–78, 2017, doi: https://doi.org/10.1016/J.WASMAN.2017.08.032
- M. Olazar, G. Lopez, M. Amutio, G. Elordi, R. Aguado, J. Bilbao, “Influence of FCC catalyst steaming on HDPE pyrolysis product distribution,” J. Anal. Appl. Pyrolysis, vol. 85, no. 1–2, pp. 359–365, 2009, doi: https://doi.org/10.1016/J.JAAP.2008.10.016
- P. Amar, “Empleo de catalizadores heterogéneos para el aprovechamiento de biomasa lignocelulósica mediante pirólisis,” tesis doctoral, Universidad Nacional del Sur, Argentina, 2016.
- D. Alviro Dobón, J. J. Manyá Cervelló, C. Di Stasi, “Craqueo y reformado de vapores de pirólisis en un lecho de biochar como catalizador de bajo coste,” trabajo Fin de Master, Universidad de Zaragoza, España, 2018.
- R. N. Martínez, “Pirólisis catalítica de polietileno: estudio de la evolución de la distribución de productos y desactivación del catalizador,” tesis doctoral, Universidad de Alicante (UA), España, 2007.
- F. Botello, E. Camporredondo, and F. Avalos, “Pirólisis del polietileno en presencia y ausencia de catalizadores arcillosos,” Prospectiva, vol. 8, no. 1, pp. 95–100, 2010.
- M. Zhang, J. Ma, G. Wen, Q. Yang, B. Su, Q. Ren, “Producción de gas a partir de tereftalato de polietileno mediante plasma de arco rotatorio,” Chemical Engineering and Processing - Process Intensification, vol. 128, pp. 257-262, 2018, doi: https://doi.org/10.1016/j.cep.2018.04.021
- C. Li, F. Ataei, F. Atashi, X. Hu, M. Gholizadeh, “Catalytic pyrolysis of polyethylene terephthalate over zeolite catalyst: Characteristics of coke and the products,” Int. J. Energy Res., vol. 45, no. 13, pp. 19028–19042, 2021, doi: https://doi.org/10.1002/er.7078
- A. Cherednichenko, E. Markova, and ... T. S., “Destrucción termocatalítica de polímeros de poliolefina en presencia de LnVO3 y LnVO4,” Catal. Today, vol. 379, pp. 80-86, 2021, doi: https://doi.org/10.1016/j.cattod.2021.03.012
- M. Havelcová, O. Bičáková, I. Sýkorová, Z. Weishauptová, and A. Melegy, “Caracterización de productos de pirólisis de carbón con adición de tereftalato de polietileno,” Proces. Combust., 2016, doi: https://doi.org/10.1016/j.fuproc.2016.08.022
- M. Artetxe, G. Lopez, M. Amutio, G. Elordi, M. Olazar, J. Bilbao, “Operating conditions for the pyrolysis of poly-(ethylene terephthalate) in a conical spouted-bed reactor,” Ind. Eng. Chem. Res., vol. 49, no. 5, pp. 2064–2069, 2010, doi: https://doi.org/10.1021/IE900557C
- T. Maqsood, J. Dai, Y. Zhang, M. Guang, B. Li, “Pirólisis de especies plásticas: una revisión de recursos y productos,” Journal of Analytical and Applied Pyrolysis, vol. 159, 2021, doi: https://doi.org/10.1016/j.jaap.2021.105295
- Ö. Çepelioğullar, A. E. Pütün, “Utilization of Two Different Types of Plastic Wastes from Daily and Industrial Life,” Proceeding Of THE ICOEST’2013, pp. 694-706, 2013.
- S. FakhrHoseini and M. Dastanian, “Predicción de productos de pirólisis de PE, PP y PET utilizando el modelo de coeficiente de actividad NRTL,” Journal of Chemistry, 2013, doi: https://doi.org/10.1155/2013/487676
- H. Jia, H. Ben, Y. Luo, R. Wang, “Catalytic Fast Pyrolysis of Poly (Ethylene Terephthalate) (PET) with Zeolite and Nickel Chloride,” Polymers, vol. 12, no. 3, 2020, doi: https://doi.org/10.3390/polym12030705
- A. López, I. De Marco, B. Caballero, “Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud,” Applied Catalysis B: Environmental, vol. 104, pp. 211-219, 2011, doi: https://doi.org/10.1016/j.apcatb.2011.03.030