Vol. 23 Núm. 1 (2024): Revista UIS Ingenierías
Artículos

Síntesis de nanocatalizadores basados en nanopartículas de óxido de hierro: una revisión bibliométrica

Leidy C. Chagüendo-Figueroa
Universidad del Cauca
Edgar Mosquera-Vargas
Universidad del Valle
Diego Coral
Universidad del Cauca

Publicado 2024-03-06

Palabras clave

  • catalizador,
  • óxidos de hierro,
  • síntesis,
  • nanotubos de carbono

Cómo citar

Chagüendo-Figueroa , L. C. ., Mosquera-Vargas , E. ., & Coral , D. (2024). Síntesis de nanocatalizadores basados en nanopartículas de óxido de hierro: una revisión bibliométrica. Revista UIS Ingenierías, 23(1), 47–64. https://doi.org/10.18273/revuin.v23n1-2024005

Resumen

En este artículo se presenta una revisión bibliográfica de las rutas de síntesis de nanopartículas de óxido de hierro con aplicaciones como nanocatalizadores en la síntesis de nanoestructuras de carbono por el método de pirólisis de plásticos. Por medio de la pirólisis, es posible sintetizar estructuras tales como nanotubos de carbono de pared simple (SWCNTs), de pared doble (DWCNTs), de pared múltiple (MWCNTs) y nano fibras de carbono (CNFs), las propiedades morfológicas y químicas de los nanocatalizadores garantizan la producción mayoritaria y poco defectuosa de estas nanoestructuras. En cuanto al nanocatalizador de óxido de hierro, esta revisión expone la importancia de parámetros como su forma y tamaño, propiedades que son controladas desde el proceso de síntesis, y la importancia de la interacción entre las nanopartículas y el soporte utilizado. Estos factores influyen directamente en el rendimiento del nanocatalizador, en términos de la actividad catalítica, la selectividad y la durabilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. A. Fürstner, “Iron catalysis in organic synthesis: A critical assessment of what it takes to make this base metal a multitasking champion,” ACS Cent. Sci., vol. 2, no. 11, pp. 778–789, Nov. 2016, doi: https://doi.org/10.1021/ACSCENTSCI.6B00272/ASSET/IMAGES/LARGE/OC-2016-00272T_0014.JPEG
  2. R. Ricciardi, J. Huskens, W. Verboom, “Nanocatalysis in Flow,” ChemSusChem, vol. 8, no. 16, pp. 2586–2605, Aug. 2015, doi: https://doi.org/10.1002/CSSC.201500514
  3. J. O. Guevara-pulido, J. Caicedo, F. David, M. Vela, J. González, H. del Artículo, “Catálisis asimétrica, una nueva era en la síntesis de fármacos: Historia y evolución,” Revista Facultad de Ciencias Básicas, vol. 13, no. 2, pp. 105–116, 2017, doi: https://doi.org/10.18359/rfcb.2747
  4. L. Li et al., “Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review,” Crit. Rev. Environ. Sci. Technol., vol. 36, no. 5, pp. 405–431, Oct. 2006, doi: https://doi.org/10.1080/10643380600620387
  5. S. Zhang, L. Nguyen, Y. Zhu, S. Zhan, C. K. F. Tsung, and F. F. Tao, “In-situ studies of nanocatalysis,” Acc. Chem. Res., vol. 46, no. 8, pp. 1731–1739, Aug. 2013, doi: https://doi.org/10.1021/AR300245G
  6. H. Woo, K. H. Park, “Recent developments in hybrid iron oxide–noble metal nanocatalysts for organic reactions,” Catal. Today, vol. 278, pp. 209–226, 2016, doi: https://doi.org/10.1016/J.CATTOD.2016.01.030
  7. T. Vangijzegem, D. Stanicki, S. Laurent, “Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics,” Expert Opin. Drug Deliv., vol. 16, no. 1, pp. 69–78, Jan. 2019, doi: https://doi.org/10.1080/17425247.2019.1554647
  8. C. Goswami, K. K. Hazarika, P. Bharali, “Transition metal oxide nanocatalysts for oxygen reduction reaction,” Mater. Sci. Energy Technol., vol. 1, no. 2, pp. 117–128, 2018, doi: https://doi.org/10.1016/J.MSET.2018.06.005
  9. H. F. Orozco, “Síntesis, caracterización y recubrimiento de nanopartículas superparamagnéticas,” proyecto fin de master, Universidad Autónoma de Zacatecas, 2018.
  10. L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, “Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications,” Chem. Rev., vol. 116, no. 18, pp. 10473–10512, Sep. 2016, doi: https://doi.org/10.1021/ACS.CHEMREV.5B00687
  11. G. Priyadarshana, N. Kottegoda, A. Senaratne, A. De Alwis, V. Karunaratne, “Synthesis of magnetite nanoparticles by top-down approach from a high purity ore,” J. Nanomater., vol. 2015, 2015, doi: https://doi.org/10.1155/2015/317312
  12. A. Ali et al., “Synthesis, characterization, applications, and challenges of iron oxide nanoparticles,” Nanotechnol. Sci. Appl., vol. 9, pp. 49–67, 2016, doi: https://doi.org/10.2147/NSA.S99986
  13. C. Jiang et al., “Methane Catalytic Pyrolysis by Microwave and Thermal Heating over Carbon Nanotube-Supported Catalysts: Productivity, Kinetics, and Energy Efficiency,” Ind. Eng. Chem. Res., vol. 61, no. 15, pp. 5080–5092, Apr. 2022, doi: https://doi.org/10.1021/ACS.IECR.1C05082
  14. K. S. Ibrahim, “Carbon nanotubes-properties and applications: a review,” Carbon Lett., vol. 14, no. 3, pp. 131–144, Jul. 2013, doi: https://doi.org/10.5714/CL.2013.14.3.131
  15. E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol., vol. 61, no. 13, pp. 1899–1912, Oct. 2001, doi: https://doi.org/10.1016/S0266-3538(01)00094-X
  16. E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov, L. A. Chernozatonskii, “Correlation between metal catalyst particle size and carbon nanotube growth,” Chem. Phys. Lett., vol. 355, no. 5–6, pp. 497–503, Apr. 2002, doi: https://doi.org/10.1016/S0009-2614(02)00283-X
  17. S. P. Patole, H. Kim, J. Choi, Y. Kim, S. Baik, J. B. Yoo, “Kinetics of catalyst size dependent carbon nanotube growth by growth interruption studies,” Appl. Phys. Lett., vol. 96, no. 9, 2010, doi: https://doi.org/10.1063/1.3330848
  18. M. T. Darby, M. Stamatakis, A. Michaelides, and E. C. H. Sykes, “Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys,” J. Phys. Chem. Lett., vol. 9, no. 18, pp. 5636–5646, 2018, doi: https://doi.org/10.1021/ACS.JPCLETT.8B01888
  19. / Chorkendotff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics Second. Wiley, 2007.
  20. S. Mousavi, M. H. Keshavarz, and S. Moeini, “Palladium doped with boron and phosphorus on activated carbon: a high-performance nanocatalyst for the hydrogenation of alkenes,” Mater. Today Chem., vol. 28, p. 101360, Mar. 2023, doi: https://doi.org/10.1016/J.MTCHEM.2022.101360
  21. A. Zuliani, F. Ivars, and R. Luque, “Advances in Nanocatalyst Design for Biofuel Production,” ChemCatChem, vol. 10, no. 9, pp. 1968–1981, May 2018, doi: https://doi.org/10.1002/CCTC.201701712
  22. P. Prinsen and R. Luque, “Chapter 1 Introduction to Nanocatalysts,” RSC Catal. Ser., vol. 2019, no. 38, pp. 1–36, 2019, doi: https://doi.org/10.1039/9781788016292-00001
  23. M. Behrens et al., “Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO:Al,” J. Am. Chem. Soc., vol. 135, no. 16, pp. 6061–6068, Apr. 2013, doi: https://doi.org/10.1021/JA310456F
  24. C. S. Diercks, Y. Liu, K. E. Cordova, and O. M. Yaghi, “The role of reticular chemistry in the design of CO2 reduction catalysts,” Nat. Mater, vol. 17, no. 4, pp. 301–307, Feb. 2018, doi: https://doi.org/10.1038/s41563-018-0033-5
  25. G. Zhan, P. Li, H. C. Zeng, “Architectural Designs and Synthetic Strategies of Advanced Nanocatalysts,” Adv. Mater., vol. 30, no. 47, p. 1802094, Nov. 2018, doi: https://doi.org/10.1002/ADMA.201802094
  26. S. Chaudhury, “Theoretical investigations of the dynamics of chemical reactions on nanocatalysts with multiple active sites,” ACS Publ., vol. 12, no. 6, p. 44, Mar. 2020, doi: https://doi.org/10.1021/acs.jpclett.0c00316
  27. P. A. Sabatier, “Top-Down and Bottom-Up Approaches to Implementation Research: a Critical Analysis and Suggested Synthesis,” J. Public Policy, vol. 6, no. 1, pp. 21–48, 1986, doi: https://doi.org/10.1017/S0143814X00003846
  28. P. Shrimal, G. Jadeja, S. Patel, “A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach,” Chem. Eng. Res. Des., vol. 153, pp. 728–756, Jan. 2020, doi: https://doi.org/10.1016/J.CHERD.2019.11.031
  29. A. D. Mihai, C. Chircov, A. M. Grumezescu, and A. M. Holban, “Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies,” Int. J. Mol. Sci., vol. 21, no. 19, p. 7355, Oct. 2020, doi: https://doi.org/10.3390/IJMS21197355
  30. Y. Wang et al., “A simple solid–liquid grinding/templating route for the synthesis of magnetic iron/graphitic mesoporous carbon composites,” Carbon N. Y., vol. 51, no. 1, pp. 397–403, 2013, doi: https://doi.org/10.1016/J.CARBON.2012.08.073
  31. D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX 3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces, vol. 11, no. 10, pp. 10059–10067, 2019, doi: https://doi.org/10.1021/ACSAMI.8B19002
  32. D. Chen, S. Ni, and Z. Chen, “Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill,” China Particuology, vol. 5, no. 5, pp. 357–358, Oct. 2007, doi: https://doi.org/10.1016/J.CPART.2007.05.005
  33. M. Raffi, A. Rumaiz, “Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation,” Cambridge, vol. 22, no. 12, pp. 3378–3384, Dec. 2007, doi: https://doi.org/10.1557/JMR.2007.0420
  34. W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys., vol. 58, no. 3, pp. 533–606, 1986, doi: https://doi.org/10.1103/REVMODPHYS.58.533
  35. S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanoparticle Res., vol. 6, no. 4, pp. 411–414, Aug. 2004, doi: https://doi.org/10.1007/S11051-004-6575-2
  36. M. S. Bakshi, “How Surfactants Control Crystal Growth of Nanomaterials,” Cryst. Growth Des., vol. 16, no. 2, pp. 1104–1133, Feb. 2016, doi: https://doi.org/10.1021/ACS.CGD.5B01465
  37. N. T. K. Thanh, N. Maclean, and S. Mahiddine, “Mechanisms of nucleation and growth of nanoparticles in solution,” Chem. Rev., vol. 114, no. 15, pp. 7610–7630, Aug. 2014, doi: https://doi.org/10.1021/CR400544S
  38. G. Oskam, “Metal oxide nanoparticles: synthesis, characterization and application,” Journal of Sol-Gel Science and Technology, vol. 37, no. 3, pp. 161–164, Mar. 2006, doi: https://doi.org/10.1007/s10971-005-6621-2
  39. M. Niederberger, G. Garnweitner, “Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles,” Chemistry – A European Journal, vol. 12, no. 28, pp. 7282–7302, Sep. 2006, doi: https://doi.org/10.1002/chem.200600313
  40. V. Sachdeva, A. Monga, R. Vashisht, D. Singh, A. Singh, N. Bedi, “Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy,” J. Drug Deliv. Sci. Technol., vol. 74, p. 103585, Aug. 2022, doi: https://doi.org/10.1016/J.JDDST.2022.103585
  41. H. Stott Taylor, “A theory of the catalytic surface,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 108, no. 745, pp. 105–111, May 1925, doi: https://doi.org/10.1098/RSPA.1925.0061
  42. M. Che, C. O. Bennett, “The Influence of Particle Size on the Catalytic Properties of Supported Metals,” Adv. Catal., vol. 36, no. C, pp. 55–172, Jan. 1989, doi: https://doi.org/10.1016/S0360-0564(08)60017-6
  43. G. L. Haller and D. E. Resasco, “Metal–Support Interaction: Group VIII Metals and Reducible Oxides,” Adv. Catal., vol. 36, no. C, pp. 173–235, Jan. 1989, doi: https://doi.org/10.1016/S0360-0564(08)60018-8
  44. J. Grunes, J. Zhu, G. A. Somorjai, “Catalysis and nanoscience,” Chem. Commun., vol. 3, no. 18, pp. 2257–2260, Sep. 2003, doi: https://doi.org/10.1039/B305719B
  45. G. Allaedini, S. M. Tasirin, P. Aminayi, Z. Yaakob, M. Z. Meor Talib, “Carbon nanotubes via different catalysts and the important factors that affect their production: A review on catalyst preferences,” Int. J. Nano Dimens., vol. 7, no. 3, pp. 186–200, Aug. 2016, doi: https://doi.org/10.7508/IJND.2016.03.002
  46. Y. Magnin, A. Zappelli, H. Amara, F. Ducastelle, and C. Bichara, “Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles,” Phys. Rev. Lett., vol. 115, no. 20, Nov. 2015, doi: https://doi.org/10.1103/PHYSREVLETT.115.205502
  47. M. Morel, E. Mosquera, D. E. Diaz-Droguett, N. Carvajal, M. Roble, V. Rojas, R. Espinoza-González, “Mineral magnetite as precusor in the synthesis of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption,” Int. J. Hydrogen Energy., vol. 40, pp. 15540–15548, 2015, doi: https://doi.org/10.1016/j.ijhydene.2015.09.112
  48. S. Cao, F. F. Tao, Y. Tang, Y. Li, J. Yu, “Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts,” Chem. Soc. Rev., vol. 45, no. 17, pp. 4747–4765, Sep. 2016, doi: https://doi.org/10.1039/C6CS00094K
  49. L. Yi, B. Yu, W. Yi, Y. Zhou, R. Ding, X. Wang, “Carbon-Supported Bimetallic Platinum-Iron Nanocatalysts: Application in Direct Borohydride/Hydrogen Peroxide Fuel Cell,” ACS Sustain. Chem. Eng., vol. 6, no. 7, 2018, doi: https://doi.org/10.1021/ACSSUSCHEMENG.7B04438
  50. C. Wang et al., “Iron-Based Nanocatalysts for Electrochemical Nitrate Reduction,” Small Methods, vol. 6, no. 10, Oct. 2022, doi: https://doi.org/10.1002/SMTD.202200790
  51. L. Liu and A. Corma, “Confining isolated atoms and clusters in crystalline porous materials for catalysis,” Nat. Rev. Mater. 2020 63, vol. 6, no. 3, pp. 244–263, 2020, doi: https://doi.org/10.1038/s41578-020-00250-3
  52. N. Sun et al., “Multifunctional Tubular Organic Cage-Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis,” Angewandte Chemie International Edition, vol. 58, no. 50, pp. 18011–18016, 2019, doi: https://doi.org/10.1002/ANIE.201908703
  53. R. A. Milescu et al., “The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses,” Sustain. Chem. Pharm., vol. 15, p. 100230, Mar. 2020, doi: https://doi.org/10.1016/J.SCP.2020.100230
  54. G. Gómez Millán et al., “Furfural production in a biphasic system using a carbonaceous solid acid catalyst,” Appl. Catal. A Gen., vol. 585, p. 117180, Sep. 2019, doi: https://doi.org/10.1016/J.APCATA.2019.117180
  55. M. J. Ndolomingo, R. Meijboom, “Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone,” Catal. Letters, vol. 149, no. 10, pp. 2807–2822, 2019, doi: https://doi.org/10.1007/S10562-019-02790-Y
  56. T. Epicier, S. Koneti, P. Avenier, A. Cabiac, A. S. Gay, L. Roiban, “2D & 3D in situ study of the calcination of Pd nanocatalysts supported on delta-Alumina in an Environmental Transmission Electron Microscope,” Catal. Today, vol. 334, pp. 68–78, 2019, doi: https://doi.org/10.1016/J.CATTOD.2019.01.061
  57. X. Du et al., “Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts,” Nat. Commun. 2020 111, vol. 11, no. 1, pp. 1–8, 2020, doi: https://doi.org/10.1038/s41467-020-19484-4
  58. F. Naaz, U. Farooq, T. Ahmad, “Nanocatalysts”, Ceria as an Efficient Nanocatalyst for Organic Transformations, IntechOpen, 2019. doi: https://doi.org/10.5772/INTECHOPEN.82688
  59. R. Nemati, D. Elhamifar, A. Zarnegaryan, M. Shaker, “Core-shell structured magnetite silica-supported hexatungstate: A novel and powerful nanocatalyst for the synthesis of biologically active pyrazole derivatives,” Appl. Organomet. Chem., vol. 35, no. 11, 2021, doi: https://doi.org/10.1002/AOC.6409
  60. M. Daraie, M. M. Heravi, N. Sarmasti, “Synthesis of polymer-supported Zn(II) as a novel and green nanocatalyst for promoting click reactions and using design of experiment for optimization of reaction conditions,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 57, no. 7, pp. 488–498, Jul. 2020, doi: https://doi.org/10.1080/10601325.2020.1725389
  61. J. Xie, C. Lei, W. Chen, and B. Huang, “Conductive-polymer-supported palladium-iron bimetallic nanocatalyst for simultaneous 4-chlorophenol and Cr(VI) removal: Enhanced interfacial electron transfer and mechanism,” J. Hazard. Mater., vol. 424, p. 127748, Feb. 2022, doi: https://doi.org/10.1016/J.JHAZMAT.2021.127748
  62. M. H. Amin, “Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane,” Catalysts, doi: https://doi.org/10.3390/catal10010051
  63. W. Zhang, M. K. S. Li, R. Wang, P. L. Yue, P. Gao, “Preparation of stable exfoliated Pt-clay nanocatalyst,” Langmuir, vol. 25, no. 14, pp. 8226–8234, Jul. 2009, doi: https://doi.org/10.1021/LA900416V
  64. N. Wang et al., “Impregnating Subnanometer Metallic Nanocatalysts into Self-Pillared Zeolite Nanosheets,” J. Am. Chem. Soc., vol. 143, no. 18, pp. 6905–6914, 2021, doi: https://doi.org/10.1021/JACS.1C00578
  65. R. Srivastava, “Synthesis and Characterization Techniques of Nanomaterials,” Sage, vol. 4, no. 1, pp. 17–27, 2012, doi: https://doi.org/10.1080/19430892.2012.654738
  66. I. U. Din, M. A. Alotaibi, and A. I. Alharthi, “Green synthesis of methanol over zeolite based Cu nano-catalysts, effect of Mg promoter,” Sustain. Chem. Pharm., vol. 16, p. 100264, Jun. 2020, doi: https://doi.org/10.1016/J.SCP.2020.100264
  67. G. Gogoi et al., “Mixed valent copper oxide nanocatalyst on Zeolite-Y for mechanochemical oxidation, reduction and C–C bond formation reaction,” Microporous Mesoporous Mater., vol. 326, p. 111392, Oct. 2021, doi: https://doi.org/10.1016/J.MICROMESO.2021.111392
  68. C. Sarkar et al., “Interface Engineering of Graphene-Supported Cu Nanoparticles Encapsulated by Mesoporous Silica for Size-Dependent Catalytic Oxidative Coupling of Aromatic Amines,” ACS Appl. Mater. Interfaces, vol. 11, no. 12, pp. 11722–11735, Mar. 2019, doi: https://doi.org/10.1021/ACSAMI.8B18675
  69. D. V. Quang, J. E. Lee, J. K. Kim, Y. N. Kim, G. N. Shao, and H. T. Kim, “A gentle method to graft thiol-functional groups onto silica gel for adsorption of silver ions and immobilization of silver nanoparticles,” Powder Technol., vol. 235, pp. 221–227, 2013, doi: https://doi.org/10.1016/J.POWTEC.2012.10.015
  70. P. Duel de Juan, “Síntesis y Caracterización de Nanomateriales Híbridos para la captura de Iones de interés Medioambiental,” tesis doctoral, Universitat de les Illes Balears, 2022.
  71. S. Xu et al., “Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect Engineering,” Matter, vol. 1, no. 3, pp. 759–769, Sep. 2019, doi: https://doi.org/10.1016/J.MATT.2019.05.022
  72. R. Sharma, S. Dutta, S. Sharma, R. Zboril, “Fe 3 O 4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions,” ChemInform, 2016, doi: https://doi.org/10.1002/chin.201630262
  73. J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, and J. L. Gardea-Torresdey, “Nanomaterials and the environment: A review for the biennium 2008-2010,” J. Hazard. Mater., vol. 186, no. 1, pp. 1–15, Feb. 2011, doi: https://doi.org/10.1016/J.JHAZMAT.2010.11.020
  74. C. W. Lim and I. S. Lee, “Magnetically recyclable nanocatalyst systems for the organic reactions,” Nano Today, vol. 5, no. 5, pp. 412–434, 2010, doi: https://doi.org/10.1016/J.NANTOD.2010.08.008
  75. B. Rahmani Vahid, M. Haghighi, J. Toghiani, and S. Alaei, “Hybrid-coprecipitation vs. combustion synthesis of Mg-Al spinel based nanocatalyst for efficient biodiesel production,” Energy Convers. Manag., vol. 160, pp. 220–229, 2018, doi: https://doi.org/10.1016/J.ENCONMAN.2018.01.030
  76. S. Tazikeh, A. Akbari, A. Talebi, “Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method,” Materials Science-Poland, vol. 32, no. 1, pp. 98–101, 2014, doi: https://doi.org/10.2478/s13536-013-0164-y
  77. R. Shelat, S. Chandra, and A. Khanna, “Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications,” Int. J. Biol. Macromol., vol. 110, pp. 357–365, Apr. 2018, doi: https://doi.org/10.1016/J.IJBIOMAC.2017.09.067
  78. J. M. Costa, A. F. de Almeida Neto, “Nanocatalysts deposition assisted by supercritical carbon dioxide technology: A review,” Synth. Met., vol. 271, p. 116627, Jan. 2021, doi: https://doi.org/10.1016/J.SYNTHMET.2020.116627
  79. M. W. Iqbal, Y. Yu, D. S. A. Simakov, “Enhancing the surface area stability of the cerium oxide reverse water gas shift nanocatalyst via reverse microemulsion synthesis,” Catal. Today, vol. 407, pp. 230–243, 2023, doi: https://doi.org/10.1016/J.CATTOD.2021.11.029
  80. C. Liu, Y. Li, Y. Zhang, X. Zeng, J. Chen, and L. Shao, “Synthesis of Ni-CeO2 nanocatalyst by the microemulsion-gas method in a rotor-stator reactor,” Chem. Eng. Process. - Process Intensif., vol. 130, pp. 93–100, Aug. 2018, doi: https://doi.org/10.1016/J.CEP.2018.06.001
  81. A. M. Prodan, S. L. Iconaru, C. S. Ciobanu, M. C. Chifiriuc, M. Stoicea, D. Predoi, “Iron oxide magnetic nanoparticles: Characterization and toxicity evaluation by in vitro and in vivo assays,” J. Nanomater., 2013, doi: https://doi.org/10.1155/2013/587021
  82. Y. H. Chung and S. Jou, “Carbon nanotubes from catalytic pyrolysis of polypropylene,” Mater. Chem. Phys., vol. 92, no. 1, pp. 256–259, 2005, doi: https://doi.org/10.1016/J.MATCHEMPHYS.2005.01.023
  83. Q. Kong, J. Zhang, “Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene,” Polym. Degrad. Stab., vol. 92, no. 11, pp. 2005–2010, 2007, doi: https://doi.org/10.1016/J.POLYMDEGRADSTAB.2007.08.002
  84. M. Raffi, A. K. Rumaiz, M. M. Hasan, and S. I. Shah, “Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation,” J. Mater. Res., vol. 22, no. 12, pp. 3378–3384, 2007, doi: https://doi.org/10.1557/JMR.2007.0420
  85. G. Elordi, M. Olazar, R. Aguado, G. Lopez, M. Arabiourrutia, and J. Bilbao, “Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor,” J. Anal. Appl. Pyrolysis, vol. 79, no. 1–2, pp. 450–455, 2007, doi: https://doi.org/10.1016/J.JAAP.2006.11.010
  86. J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, no. 4–6, pp. 567–574, 1998, doi: https://doi.org/10.1016/S0009-2614(98)00745-3
  87. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B, vol. 105, no. 46, pp. 11424–11431, Nov. 2001, doi: https://doi.org/10.1021/JP012085B
  88. Y. Homma, T. Yamashita, P. Finnie, M. Tomita, and T. Ogino, “Single-walled carbon nanotube growth on silicon substrates using nanoparticle catalysts,” Japanese J. Appl. Physics, Part 2 Lett., vol. 41, no. 1 A/B, Jan. 2002, doi: https://doi.org/10.1143/JJAP.41.L89/META
  89. W. Kim et al., “Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes,” ACS Publ., vol. 2, no. 7, pp. 703–708, Jul. 2002, doi: https://doi.org/10.1021/nl025602q
  90. F. Danafar, A. Fakhru’l-Razi, M. A. M. Salleh, and D. R. A. Biak, “Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review,” Chem. Eng. J., vol. 155, no. 1–2, pp. 37–48, 2009, doi: https://doi.org/10.1016/J.CEJ.2009.07.052
  91. E. Lamouroux, P. Serp, Y. Kihn, and P. Kalck, “New efficient Fe2O3 and FeMo supported OMCVD catalysts for single wall carbon nanotubes growth,” Catal. Commun., vol. 7, no. 8, pp. 604–609, 2006, doi: https://doi.org/10.1016/J.CATCOM.2006.01.020
  92. M. H. Khedr, K. S. Abdel Halim, and N. K. Soliman, “Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes,” Appl. Surf. Sci., vol. 255, no. 5 PART 1, pp. 2375–2381, 2008, doi: https://doi.org/10.1016/J.APSUSC.2008.07.096
  93. V. I. Alexiadis, X. E. Verykios, “Influence of structural and preparation parameters of Fe2O3/Al2O3 catalysts on rate of production and quality of carbon nanotubes,” Mater. Chem. Phys., vol. 117, no. 2–3, pp. 528–535, Oct. 2009, doi: https://doi.org/10.1016/J.MATCHEMPHYS.2009.06.033
  94. K. Kouravelou and X. Verykios, “Dynamic Study of Gas-Phase Species during Single-Walled Carbon Nanotubes Production by Chemical Vapor Deposition of Ethanol,” ECS Trans., vol. 25, no. 8, pp. 997–1005, Sep. 2009, doi: https://doi.org/10.1149/1.3207698/META
  95. N. Publications, S. S. Kim, P. B. Amama, T. Fisher, and T. S. Fisher, “Preferential biofunctionalization of carbon nanotubes grown by microwave plasma-enhanced CVD,” ACS Publ., vol. 114, no. 21, pp. 9596–9602, Jun. 2010, doi: https://doi.org/10.1021/jp912092n
  96. W. Zhao, D. N. Seo, H. T. Kim, and I. J. Kim, “Characterization of multi-walled carbon nanotubes (MWNTs) synthesized by CCVD using zeolite template from acetylene,” J. Ceram. Soc. Japan, vol. 118, no. 1383, pp. 983–988, 2010, doi: https://doi.org/10.2109/JCERSJ2.118.983
  97. N. D. Hien, “Optical properties of a single quantum well with Pöschl–Teller confinement potential,” Phys. E Low-dimensional Syst. Nanostructures, vol. 145, p. 115504, Jan. 2023, doi: https://doi.org/10.1016/J.PHYSE.2022.115504
  98. E. Teblum, Y. Gofer, C. L. Pint, and G. D. Nessim, “Role of catalyst oxidation state in the growth of vertically aligned carbon nanotubes,” J. Phys. Chem. C, vol. 116, no. 46, pp. 24522–24528, Nov. 2012, doi: https://doi.org/10.1021/JP305169B
  99. S. H. Liu et al., “Template effect of hydrolysis of the catalyst precursor on growth of carbon nanotube arrays,” J. Colloid Interface Sci., vol. 374, no. 1, pp. 34–39, May 2012, doi: https://doi.org/10.1016/J.JCIS.2012.02.005
  100. F. Dillon, M. Copley, A. A. Koós, P. Bishop, and N. Grobert, “Flame spray pyrolysis generated transition metal oxide nanoparticles as catalysts for the growth of carbon nanotubes,” RSC Adv., vol. 3, no. 43, pp. 20040–20045, Nov. 2013, doi: https://doi.org/10.1039/C3RA40773J
  101. M. Song, B. Liu, S. Huang, and A. Zhou, “Experimental study of seismic performance on three-story prestressed fabricated concrete frame,” Adv. Mater. Res., vol. 250–253, pp. 1287–1292, 2011, doi: https://doi.org/10.4028/www.scientific.net/AMR.250-253.1287
  102. W. W. Liu, T. Adam, A. Aziz, S. P. Chai, A. R. Mohamed, and U. Hashim, “Formation of carbon nanotubes from methane decomposition: Effect of concentration of Fe3O4 on the diameters distributions,” Adv. Mater. Res., vol. 832, pp. 62–67, 2014, doi: https://doi.org/10.4028/www.scientific.net/AMR.832.62
  103. S. Shukrullah, M. Y. Naz, N. M. Mohamed, K. A. Ibrahim, A. Ghaffar, and N. M. AbdEl-Salam, “Synthesis of MWCNT forests with alumina-supported Fe2O3 catalyst by using a floating catalyst chemical vapor deposition technique,” J. Nanomater., vol. 2019, 2019, doi: https://doi.org/10.1155/2019/4642859
  104. S. Shukrullah, M. Y. Naz, N. M. Mohamed, K. A. Ibrahim, A. Ghaffar, and N. M. AbdEl-Salam, “Production of bundled CNTs by floating a compound catalyst in an atmospheric pressure horizontal CVD reactor,” Results Phys., vol. 12, pp. 1163–1171, Mar. 2019, doi: https://doi.org/10.1016/J.RINP.2019.01.001
  105. Y. Suda, T. Iida, H. Takikawa, … T. H.-A. C., and undefined 2016, “Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils,” AIP Conf. Proc, vol. 1709, p. 20008, Feb. 2016, doi: https://doi.org/10.1063/1.4941207
  106. S. McCaldin, M. Bououdina, D. M. Grant, and G. S. Walker, “The effect of processing conditions on carbon nanostructures formed on an iron-based catalyst,” Carbon, vol. 44, no. 11, pp. 2273–2280, Sep. 2006, doi: https://doi.org/10.1016/J.CARBON.2006.02.030
  107. F. Le Normand et al., “Aligned carbon nanotubes catalytically grown on iron-based nanoparticles obtained by laser-induced CVD,” Appl. Surf. Sci., vol. 254, no. 4, pp. 1058–1066, Dec. 2007, doi: https://doi.org/10.1016/J.APSUSC.2007.08.054
  108. R. Atchudan, B. Cha, N. Lone, J. Kim, J. Joo, “Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles,” Korean Journal of Chemical Engineering, vol. 36, no. 1, pp. 157–165, 2018, doi: https://doi.org/10.1007/s11814-018-0200-z
  109. J. Z. Wen et al., “Experimental study of catalyst nanoparticle and single walled carbon nanotube formation in a controlled premixed combustion,” J. Mater. Chem., doi: https://doi.org/10.1039/b717067j
  110. T. Tsuji, K. Hata, D. N. Futaba, S. Sakurai, “Additional obstacles in carbon nanotube growth by gas-flow directed chemical vapour deposition unveiled through improving growth density,” Nanoscale Adv., vol. 1, no. 10, pp. 4076–4081, Oct. 2019, doi: https://doi.org/10.1039/C9NA00209J
  111. S. Shukrullah, N. M. Mohamed, Y. Khan, M. Y. Naz, A. Ghaffar, I. Ahmad, “Effect of Gas Flowrate on Nucleation Mechanism of MWCNTs for a Compound Catalyst,” J. Nanomater., vol. 2017, 2017, doi: https://doi.org/10.1155/2017/3407352
  112. M. Morel et al., “Mineral magnetite as precursor in the synthesis of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption,” International Journal of Hydrogen Energy, 2015, doi: https://doi.org/10.1016/j.ijhydene.2015.09.112
  113. Z. Aslam, X. Li, R. Brydson, B. Rand, U. Falke, and A. Bleloch, “Supported Catalytic Growth of SWCNTs using the CVD Method,” J. Phys. Conf. Ser., vol. 26, no. 1, p. 139, 2006, doi: https://doi.org/10.1088/1742-6596/26/1/033
  114. X. Wang et al., “Coating alumina on catalytic iron oxide nanoparticles for synthesizing vertically aligned carbon nanotube arrays,” ACS Appl. Mater. Interfaces, vol. 3, no. 11, pp. 4180–4184, 2011, doi: https://doi.org/10.1021/AM201082M
  115. Y. S. Cho, G. S. Choi, S. Y. Hong, and D. Kim, “Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition,” J. Cryst. Growth, vol. 243, no. 1, pp. 224–229, 2002, doi: https://doi.org/10.1016/S0022-0248(02)01496-3
  116. Y. Kobayashi, H. Nakashima, D. Takagi, and Y. Homma, “CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst,” Thin Solid Films, vol. 464–465, pp. 286–289, 2004, doi: https://doi.org/10.1016/J.TSF.2004.06.045
  117. L. Jodin, A. C. Dupuis, E. Rouvière, and P. Reiss, “Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition,” J. Phys. Chem. B, vol. 110, no. 14, pp. 7328–7333, 2006, doi: https://doi.org/10.1021/JP056793Z
  118. P. N. Minh, N. Van Chuc, P. N. Hong, N. T. T. Tam, P. H. Khoi, “New technique for the synthesis of carbon nanotubes,” J. Korean Phys. Soc., vol. 53, no. 5, pp. 2725–2730, 2008, doi: https://doi.org/10.3938/JKPS.53.2725
  119. D. Roy and K. Ram, “Magnetite nanoparticles by organic-phase synthetic route for carbon nanotube growth,” Synth. Met., vol. 159, no. 3–4, pp. 343–346, Feb. 2009, doi: https://doi.org/10.1016/J.SYNTHMET.2008.09.010
  120. M. Felisberto, L. Sacco, I. Mondragon, G. H. Rubiolo, R. J. Candal, and S. Goyanes, “The growth of carbon nanotubes on large areas of silicon substrate using commercial iron oxide nanoparticles as a catalyst,” Mater. Lett., vol. 64, no. 20, pp. 2188–2190, 2010, doi: https://doi.org/10.1016/J.MATLET.2010.07.016
  121. K. Mandel et al., “Customised transition metal oxide nanoparticles for the controlled production of carbon nanostructures,” RSC Adv., doi: https://doi.org/10.1039/c2ra01324j
  122. M. Kushida, T. Koide, I. Osada, Y. Imaizumi, K. Kawasaki, and T. Sugawara, “Fabrication of Fe3O4/SiO2 core-shell nanoparticle monolayer as catalyst for carbon nanotube growth using Langmuir-Blodgett technique,” Thin Solid Films, vol. 537, pp. 252–255, Jun. 2013, doi: https://doi.org/10.1016/J.TSF.2013.04.031
  123. M. Ohashi, T. Sugawara, K. Kawasaki, and M. Kushida, “Synthesis and diameter control of vertically-aligned carbon nanotube growth from Langmuir-Blodgett films deposited Fe3O4@SiO 2 core-shell nanoparticles,” Jpn. J. Appl. Phys., vol. 53, no. 2, 2014, doi: https://doi.org/10.7567/JJAP.53.02BD09/META
  124. T. Thanh Cao et al., “Effects of ferrite catalyst concentration and water vapor on growth of vertically aligned carbon nanotube,” Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, doi: https://doi.org/10.1088/2043-6262/5/4/045009
  125. A. Baliyan, Y. Nakajima, T. Fukuda, T. Uchida, T. Hanajiri, and T. Maekawa, “Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles,” J. Am. Chem. Soc., vol. 136, no. 3, pp. 1047–1053, Jan. 2014, doi: https://doi.org/10.1021/JA410794P
  126. W. Zhao, B. Basnet, S. Kim, and I. J. Kim, “Synthesis of vertically aligned carbon nanotubes on silicalite-1 monolayer-supported substrate,” J. Nanomater., vol. 2014, 2014, doi: https://doi.org/10.1155/2014/327398
  127. W. Zhao, D. N. Seo, J. Gong, S. Kim, and I. J. Kim, “Synthesis of vertically-aligned CNT arrays from diameter-controlled Fe 3O4 nanoparticles,” J. Ceram. Soc. Japan, vol. 122, no. 1423, pp. 187–191, 2014, doi: https://doi.org/10.2109/JCERSJ2.122.187
  128. D. M. Tang et al., “Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy,” ACS Nano, vol. 8, no. 1, pp. 292–301, Jan. 2014, doi: https://doi.org/10.1021/NN403927Y
  129. K. Nakamura, N. Kuriyama, S. Takagiwa, T. Sato, and M. Kushida, “Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique,” Jpn. J. Appl. Phys., vol. 55, no. 3, Mar. 2016, doi: https://doi.org/10.7567/JJAP.55.03DD06/META
  130. T. Endah Saraswati, O. Dewi Indah Prasiwi, A. Masykur, and M. Anwar, “Bifunctional catalyst of graphite-encapsulated iron compound nanoparticle for magnetic carbon nanotubes growth by chemical vapor deposition,” AIP Conference Proceedings, vol. 1788, Jan. 2017, doi: https://doi.org/10.1063/1.4968282
  131. M. C. Altay and S. Eroglu, “Thermodynamic analysis and chemical vapor deposition of multi-walled carbon nanotubes from pre-heated CH4 using Fe2O3 particles as catalyst precursor,” J. Cryst. Growth, vol. 364, pp. 40–45, 2013, doi: https://doi.org/10.1016/J.JCRYSGRO.2012.11.062
  132. S. S. Lee et al., “Control over the diameter, length, and structure of carbon nanotube carpets using aluminum ferrite and iron oxide nanocrystals as catalyst precursors,” J. Phys. Chem. C, vol. 116, no. 18, pp. 10287–10295, May 2012, doi: https://doi.org/10.1021/JP212404J
  133. B. Bahrami, A. Khodadadi, Y. Mortazavi, and M. Esmaieli, “Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles,” Appl. Surf. Sci., vol. 257, no. 23, pp. 9710–9716, Sep. 2011, doi: https://doi.org/10.1016/J.APSUSC.2011.05.086
  134. N. T. Alvarez et al., “Uniform large diameter carbon nanotubes in vertical arrays from premade near-monodisperse nanoparticles,” ACS Publ., vol. 23, no. 15, pp. 3466–3475, Aug. 2011, doi: https://doi.org/10.1021/cm200664g
  135. S. Han et al., “Diameter-controlled synthesis of discrete and uniform-sized single-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded in zirconia nanoparticle arrays as catalysts,” J. Phys. Chem. B, vol. 108, no. 24, pp. 8091–8095, Jun. 2004, doi: https://doi.org/10.1021/JP037634N
  136. H. Ago, K. Nakamura, S. Imamura, and M. Tsuji, “Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO,” Chem. Phys. Lett., vol. 391, no. 4–6, pp. 308–313, Jun. 2004, doi: https://doi.org/10.1016/J.CPLETT.2004.04.110
  137. P. Pandey, M. Datta, B. D. Malhotra, “Prospects of nanomaterials in biosensors,” Anal. Lett., vol. 41, no. 2, pp. 159–209, Jan. 2008, doi: https://doi.org/10.1080/00032710701792620
  138. X. P. Zou et al., “Selective growth of carbon nanotube on silicon substrates,” Trans. Nonferrous Met. Soc. China, 2006, doi: https://doi.org/10.1016/S1003-6326(06)60214-8
  139. X. Liu, T. P. Bigioni, Y. Xu, A. M. Cassell, and B. A. Gruden, “Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates,” J. Phys. Chem. B, vol. 110, no. 41, pp. 20102–20106, Oct. 2006, doi: https://doi.org/10.1021/JP0647378
  140. R. D. Bennett, A. J. Hart, A. C. Miller, P. T. Hammond, D. J. Irvine, and R. E. Cohen, “Creating patterned carbon nanotube catalysts through the microcontact printing of block copolymer micellar thin films,” Langmuir, vol. 22, no. 20, pp. 8273–8276, Sep. 2006, doi: https://doi.org/10.1021/LA061054A
  141. R. D. Bennett, A. J. Hart, R. E. Cohen, “Controlling the morphology of carbon nanotube films by varying the areal density of catalyst nanoclusters using block-copolymer micellar thin films,” Adv. Mater., vol. 18, no. 17, pp. 2274–2279, 2006, doi: https://doi.org/10.1002/ADMA.200600975
  142. S. M. Tan, S. P. Chai, W. W. Liu, and A. R. Mohamed, “Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane,” J. Alloys Compd., vol. 477, no. 1–2, pp. 785–788, May 2009, doi: https://doi.org/10.1016/J.JALLCOM.2008.10.114