Synthesis of nanocatalysts based on iron oxide nanoparticles: a bibliometric review
Published 2024-03-06
Keywords
- Catalyst,
- iron oxide,
- synthesis,
- carbon nanotubes
How to Cite
Copyright (c) 2024 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
This article presents a literature review of the iron oxide nanoparticles synthesis routes with applications as nanocatalysts in the synthesis of carbon nanostructures using the plastic pyrolysis method. Through pyrolysis, it is possible to synthesize structures such as single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), multi-walled carbon nanotubes (MWCNTs), and carbon nanofibers (CNFs). The morphological and chemical properties of the nanocatalysts ensure the majority production with minimal defects of these nanostructures. Regarding the iron oxide nanocatalyst, this review emphasizes the importance of parameters such as its shape and size, properties that are controlled during the synthesis process, and the significance of the interaction between nanoparticles and the support material used. These factors directly influence the nanocatalyst's performance in terms of catalytic activity, selectivity, and durability.
Downloads
References
- A. Fürstner, “Iron catalysis in organic synthesis: A critical assessment of what it takes to make this base metal a multitasking champion,” ACS Cent. Sci., vol. 2, no. 11, pp. 778–789, Nov. 2016, doi: https://doi.org/10.1021/ACSCENTSCI.6B00272/ASSET/IMAGES/LARGE/OC-2016-00272T_0014.JPEG
- R. Ricciardi, J. Huskens, W. Verboom, “Nanocatalysis in Flow,” ChemSusChem, vol. 8, no. 16, pp. 2586–2605, Aug. 2015, doi: https://doi.org/10.1002/CSSC.201500514
- J. O. Guevara-pulido, J. Caicedo, F. David, M. Vela, J. González, H. del Artículo, “Catálisis asimétrica, una nueva era en la síntesis de fármacos: Historia y evolución,” Revista Facultad de Ciencias Básicas, vol. 13, no. 2, pp. 105–116, 2017, doi: https://doi.org/10.18359/rfcb.2747
- L. Li et al., “Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review,” Crit. Rev. Environ. Sci. Technol., vol. 36, no. 5, pp. 405–431, Oct. 2006, doi: https://doi.org/10.1080/10643380600620387
- S. Zhang, L. Nguyen, Y. Zhu, S. Zhan, C. K. F. Tsung, and F. F. Tao, “In-situ studies of nanocatalysis,” Acc. Chem. Res., vol. 46, no. 8, pp. 1731–1739, Aug. 2013, doi: https://doi.org/10.1021/AR300245G
- H. Woo, K. H. Park, “Recent developments in hybrid iron oxide–noble metal nanocatalysts for organic reactions,” Catal. Today, vol. 278, pp. 209–226, 2016, doi: https://doi.org/10.1016/J.CATTOD.2016.01.030
- T. Vangijzegem, D. Stanicki, S. Laurent, “Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics,” Expert Opin. Drug Deliv., vol. 16, no. 1, pp. 69–78, Jan. 2019, doi: https://doi.org/10.1080/17425247.2019.1554647
- C. Goswami, K. K. Hazarika, P. Bharali, “Transition metal oxide nanocatalysts for oxygen reduction reaction,” Mater. Sci. Energy Technol., vol. 1, no. 2, pp. 117–128, 2018, doi: https://doi.org/10.1016/J.MSET.2018.06.005
- H. F. Orozco, “Síntesis, caracterización y recubrimiento de nanopartículas superparamagnéticas,” proyecto fin de master, Universidad Autónoma de Zacatecas, 2018.
- L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, “Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications,” Chem. Rev., vol. 116, no. 18, pp. 10473–10512, Sep. 2016, doi: https://doi.org/10.1021/ACS.CHEMREV.5B00687
- G. Priyadarshana, N. Kottegoda, A. Senaratne, A. De Alwis, V. Karunaratne, “Synthesis of magnetite nanoparticles by top-down approach from a high purity ore,” J. Nanomater., vol. 2015, 2015, doi: https://doi.org/10.1155/2015/317312
- A. Ali et al., “Synthesis, characterization, applications, and challenges of iron oxide nanoparticles,” Nanotechnol. Sci. Appl., vol. 9, pp. 49–67, 2016, doi: https://doi.org/10.2147/NSA.S99986
- C. Jiang et al., “Methane Catalytic Pyrolysis by Microwave and Thermal Heating over Carbon Nanotube-Supported Catalysts: Productivity, Kinetics, and Energy Efficiency,” Ind. Eng. Chem. Res., vol. 61, no. 15, pp. 5080–5092, Apr. 2022, doi: https://doi.org/10.1021/ACS.IECR.1C05082
- K. S. Ibrahim, “Carbon nanotubes-properties and applications: a review,” Carbon Lett., vol. 14, no. 3, pp. 131–144, Jul. 2013, doi: https://doi.org/10.5714/CL.2013.14.3.131
- E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol., vol. 61, no. 13, pp. 1899–1912, Oct. 2001, doi: https://doi.org/10.1016/S0266-3538(01)00094-X
- E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov, L. A. Chernozatonskii, “Correlation between metal catalyst particle size and carbon nanotube growth,” Chem. Phys. Lett., vol. 355, no. 5–6, pp. 497–503, Apr. 2002, doi: https://doi.org/10.1016/S0009-2614(02)00283-X
- S. P. Patole, H. Kim, J. Choi, Y. Kim, S. Baik, J. B. Yoo, “Kinetics of catalyst size dependent carbon nanotube growth by growth interruption studies,” Appl. Phys. Lett., vol. 96, no. 9, 2010, doi: https://doi.org/10.1063/1.3330848
- M. T. Darby, M. Stamatakis, A. Michaelides, and E. C. H. Sykes, “Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys,” J. Phys. Chem. Lett., vol. 9, no. 18, pp. 5636–5646, 2018, doi: https://doi.org/10.1021/ACS.JPCLETT.8B01888
- / Chorkendotff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics Second. Wiley, 2007.
- S. Mousavi, M. H. Keshavarz, and S. Moeini, “Palladium doped with boron and phosphorus on activated carbon: a high-performance nanocatalyst for the hydrogenation of alkenes,” Mater. Today Chem., vol. 28, p. 101360, Mar. 2023, doi: https://doi.org/10.1016/J.MTCHEM.2022.101360
- A. Zuliani, F. Ivars, and R. Luque, “Advances in Nanocatalyst Design for Biofuel Production,” ChemCatChem, vol. 10, no. 9, pp. 1968–1981, May 2018, doi: https://doi.org/10.1002/CCTC.201701712
- P. Prinsen and R. Luque, “Chapter 1 Introduction to Nanocatalysts,” RSC Catal. Ser., vol. 2019, no. 38, pp. 1–36, 2019, doi: https://doi.org/10.1039/9781788016292-00001
- M. Behrens et al., “Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO:Al,” J. Am. Chem. Soc., vol. 135, no. 16, pp. 6061–6068, Apr. 2013, doi: https://doi.org/10.1021/JA310456F
- C. S. Diercks, Y. Liu, K. E. Cordova, and O. M. Yaghi, “The role of reticular chemistry in the design of CO2 reduction catalysts,” Nat. Mater, vol. 17, no. 4, pp. 301–307, Feb. 2018, doi: https://doi.org/10.1038/s41563-018-0033-5
- G. Zhan, P. Li, H. C. Zeng, “Architectural Designs and Synthetic Strategies of Advanced Nanocatalysts,” Adv. Mater., vol. 30, no. 47, p. 1802094, Nov. 2018, doi: https://doi.org/10.1002/ADMA.201802094
- S. Chaudhury, “Theoretical investigations of the dynamics of chemical reactions on nanocatalysts with multiple active sites,” ACS Publ., vol. 12, no. 6, p. 44, Mar. 2020, doi: https://doi.org/10.1021/acs.jpclett.0c00316
- P. A. Sabatier, “Top-Down and Bottom-Up Approaches to Implementation Research: a Critical Analysis and Suggested Synthesis,” J. Public Policy, vol. 6, no. 1, pp. 21–48, 1986, doi: https://doi.org/10.1017/S0143814X00003846
- P. Shrimal, G. Jadeja, S. Patel, “A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach,” Chem. Eng. Res. Des., vol. 153, pp. 728–756, Jan. 2020, doi: https://doi.org/10.1016/J.CHERD.2019.11.031
- A. D. Mihai, C. Chircov, A. M. Grumezescu, and A. M. Holban, “Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies,” Int. J. Mol. Sci., vol. 21, no. 19, p. 7355, Oct. 2020, doi: https://doi.org/10.3390/IJMS21197355
- Y. Wang et al., “A simple solid–liquid grinding/templating route for the synthesis of magnetic iron/graphitic mesoporous carbon composites,” Carbon N. Y., vol. 51, no. 1, pp. 397–403, 2013, doi: https://doi.org/10.1016/J.CARBON.2012.08.073
- D. Chen, J. Li, X. Chen, J. Chen, and J. Zhong, “Grinding Synthesis of APbX 3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals,” ACS Appl. Mater. Interfaces, vol. 11, no. 10, pp. 10059–10067, 2019, doi: https://doi.org/10.1021/ACSAMI.8B19002
- D. Chen, S. Ni, and Z. Chen, “Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill,” China Particuology, vol. 5, no. 5, pp. 357–358, Oct. 2007, doi: https://doi.org/10.1016/J.CPART.2007.05.005
- M. Raffi, A. Rumaiz, “Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation,” Cambridge, vol. 22, no. 12, pp. 3378–3384, Dec. 2007, doi: https://doi.org/10.1557/JMR.2007.0420
- W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys., vol. 58, no. 3, pp. 533–606, 1986, doi: https://doi.org/10.1103/REVMODPHYS.58.533
- S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanoparticle Res., vol. 6, no. 4, pp. 411–414, Aug. 2004, doi: https://doi.org/10.1007/S11051-004-6575-2
- M. S. Bakshi, “How Surfactants Control Crystal Growth of Nanomaterials,” Cryst. Growth Des., vol. 16, no. 2, pp. 1104–1133, Feb. 2016, doi: https://doi.org/10.1021/ACS.CGD.5B01465
- N. T. K. Thanh, N. Maclean, and S. Mahiddine, “Mechanisms of nucleation and growth of nanoparticles in solution,” Chem. Rev., vol. 114, no. 15, pp. 7610–7630, Aug. 2014, doi: https://doi.org/10.1021/CR400544S
- G. Oskam, “Metal oxide nanoparticles: synthesis, characterization and application,” Journal of Sol-Gel Science and Technology, vol. 37, no. 3, pp. 161–164, Mar. 2006, doi: https://doi.org/10.1007/s10971-005-6621-2
- M. Niederberger, G. Garnweitner, “Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles,” Chemistry – A European Journal, vol. 12, no. 28, pp. 7282–7302, Sep. 2006, doi: https://doi.org/10.1002/chem.200600313
- V. Sachdeva, A. Monga, R. Vashisht, D. Singh, A. Singh, N. Bedi, “Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy,” J. Drug Deliv. Sci. Technol., vol. 74, p. 103585, Aug. 2022, doi: https://doi.org/10.1016/J.JDDST.2022.103585
- H. Stott Taylor, “A theory of the catalytic surface,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 108, no. 745, pp. 105–111, May 1925, doi: https://doi.org/10.1098/RSPA.1925.0061
- M. Che, C. O. Bennett, “The Influence of Particle Size on the Catalytic Properties of Supported Metals,” Adv. Catal., vol. 36, no. C, pp. 55–172, Jan. 1989, doi: https://doi.org/10.1016/S0360-0564(08)60017-6
- G. L. Haller and D. E. Resasco, “Metal–Support Interaction: Group VIII Metals and Reducible Oxides,” Adv. Catal., vol. 36, no. C, pp. 173–235, Jan. 1989, doi: https://doi.org/10.1016/S0360-0564(08)60018-8
- J. Grunes, J. Zhu, G. A. Somorjai, “Catalysis and nanoscience,” Chem. Commun., vol. 3, no. 18, pp. 2257–2260, Sep. 2003, doi: https://doi.org/10.1039/B305719B
- G. Allaedini, S. M. Tasirin, P. Aminayi, Z. Yaakob, M. Z. Meor Talib, “Carbon nanotubes via different catalysts and the important factors that affect their production: A review on catalyst preferences,” Int. J. Nano Dimens., vol. 7, no. 3, pp. 186–200, Aug. 2016, doi: https://doi.org/10.7508/IJND.2016.03.002
- Y. Magnin, A. Zappelli, H. Amara, F. Ducastelle, and C. Bichara, “Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles,” Phys. Rev. Lett., vol. 115, no. 20, Nov. 2015, doi: https://doi.org/10.1103/PHYSREVLETT.115.205502
- M. Morel, E. Mosquera, D. E. Diaz-Droguett, N. Carvajal, M. Roble, V. Rojas, R. Espinoza-González, “Mineral magnetite as precusor in the synthesis of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption,” Int. J. Hydrogen Energy., vol. 40, pp. 15540–15548, 2015, doi: https://doi.org/10.1016/j.ijhydene.2015.09.112
- S. Cao, F. F. Tao, Y. Tang, Y. Li, J. Yu, “Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts,” Chem. Soc. Rev., vol. 45, no. 17, pp. 4747–4765, Sep. 2016, doi: https://doi.org/10.1039/C6CS00094K
- L. Yi, B. Yu, W. Yi, Y. Zhou, R. Ding, X. Wang, “Carbon-Supported Bimetallic Platinum-Iron Nanocatalysts: Application in Direct Borohydride/Hydrogen Peroxide Fuel Cell,” ACS Sustain. Chem. Eng., vol. 6, no. 7, 2018, doi: https://doi.org/10.1021/ACSSUSCHEMENG.7B04438
- C. Wang et al., “Iron-Based Nanocatalysts for Electrochemical Nitrate Reduction,” Small Methods, vol. 6, no. 10, Oct. 2022, doi: https://doi.org/10.1002/SMTD.202200790
- L. Liu and A. Corma, “Confining isolated atoms and clusters in crystalline porous materials for catalysis,” Nat. Rev. Mater. 2020 63, vol. 6, no. 3, pp. 244–263, 2020, doi: https://doi.org/10.1038/s41578-020-00250-3
- N. Sun et al., “Multifunctional Tubular Organic Cage-Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis,” Angewandte Chemie International Edition, vol. 58, no. 50, pp. 18011–18016, 2019, doi: https://doi.org/10.1002/ANIE.201908703
- R. A. Milescu et al., “The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses,” Sustain. Chem. Pharm., vol. 15, p. 100230, Mar. 2020, doi: https://doi.org/10.1016/J.SCP.2020.100230
- G. Gómez Millán et al., “Furfural production in a biphasic system using a carbonaceous solid acid catalyst,” Appl. Catal. A Gen., vol. 585, p. 117180, Sep. 2019, doi: https://doi.org/10.1016/J.APCATA.2019.117180
- M. J. Ndolomingo, R. Meijboom, “Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone,” Catal. Letters, vol. 149, no. 10, pp. 2807–2822, 2019, doi: https://doi.org/10.1007/S10562-019-02790-Y
- T. Epicier, S. Koneti, P. Avenier, A. Cabiac, A. S. Gay, L. Roiban, “2D & 3D in situ study of the calcination of Pd nanocatalysts supported on delta-Alumina in an Environmental Transmission Electron Microscope,” Catal. Today, vol. 334, pp. 68–78, 2019, doi: https://doi.org/10.1016/J.CATTOD.2019.01.061
- X. Du et al., “Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts,” Nat. Commun. 2020 111, vol. 11, no. 1, pp. 1–8, 2020, doi: https://doi.org/10.1038/s41467-020-19484-4
- F. Naaz, U. Farooq, T. Ahmad, “Nanocatalysts”, Ceria as an Efficient Nanocatalyst for Organic Transformations, IntechOpen, 2019. doi: https://doi.org/10.5772/INTECHOPEN.82688
- R. Nemati, D. Elhamifar, A. Zarnegaryan, M. Shaker, “Core-shell structured magnetite silica-supported hexatungstate: A novel and powerful nanocatalyst for the synthesis of biologically active pyrazole derivatives,” Appl. Organomet. Chem., vol. 35, no. 11, 2021, doi: https://doi.org/10.1002/AOC.6409
- M. Daraie, M. M. Heravi, N. Sarmasti, “Synthesis of polymer-supported Zn(II) as a novel and green nanocatalyst for promoting click reactions and using design of experiment for optimization of reaction conditions,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 57, no. 7, pp. 488–498, Jul. 2020, doi: https://doi.org/10.1080/10601325.2020.1725389
- J. Xie, C. Lei, W. Chen, and B. Huang, “Conductive-polymer-supported palladium-iron bimetallic nanocatalyst for simultaneous 4-chlorophenol and Cr(VI) removal: Enhanced interfacial electron transfer and mechanism,” J. Hazard. Mater., vol. 424, p. 127748, Feb. 2022, doi: https://doi.org/10.1016/J.JHAZMAT.2021.127748
- M. H. Amin, “Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane,” Catalysts, doi: https://doi.org/10.3390/catal10010051
- W. Zhang, M. K. S. Li, R. Wang, P. L. Yue, P. Gao, “Preparation of stable exfoliated Pt-clay nanocatalyst,” Langmuir, vol. 25, no. 14, pp. 8226–8234, Jul. 2009, doi: https://doi.org/10.1021/LA900416V
- N. Wang et al., “Impregnating Subnanometer Metallic Nanocatalysts into Self-Pillared Zeolite Nanosheets,” J. Am. Chem. Soc., vol. 143, no. 18, pp. 6905–6914, 2021, doi: https://doi.org/10.1021/JACS.1C00578
- R. Srivastava, “Synthesis and Characterization Techniques of Nanomaterials,” Sage, vol. 4, no. 1, pp. 17–27, 2012, doi: https://doi.org/10.1080/19430892.2012.654738
- I. U. Din, M. A. Alotaibi, and A. I. Alharthi, “Green synthesis of methanol over zeolite based Cu nano-catalysts, effect of Mg promoter,” Sustain. Chem. Pharm., vol. 16, p. 100264, Jun. 2020, doi: https://doi.org/10.1016/J.SCP.2020.100264
- G. Gogoi et al., “Mixed valent copper oxide nanocatalyst on Zeolite-Y for mechanochemical oxidation, reduction and C–C bond formation reaction,” Microporous Mesoporous Mater., vol. 326, p. 111392, Oct. 2021, doi: https://doi.org/10.1016/J.MICROMESO.2021.111392
- C. Sarkar et al., “Interface Engineering of Graphene-Supported Cu Nanoparticles Encapsulated by Mesoporous Silica for Size-Dependent Catalytic Oxidative Coupling of Aromatic Amines,” ACS Appl. Mater. Interfaces, vol. 11, no. 12, pp. 11722–11735, Mar. 2019, doi: https://doi.org/10.1021/ACSAMI.8B18675
- D. V. Quang, J. E. Lee, J. K. Kim, Y. N. Kim, G. N. Shao, and H. T. Kim, “A gentle method to graft thiol-functional groups onto silica gel for adsorption of silver ions and immobilization of silver nanoparticles,” Powder Technol., vol. 235, pp. 221–227, 2013, doi: https://doi.org/10.1016/J.POWTEC.2012.10.015
- P. Duel de Juan, “Síntesis y Caracterización de Nanomateriales Híbridos para la captura de Iones de interés Medioambiental,” tesis doctoral, Universitat de les Illes Balears, 2022.
- S. Xu et al., “Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect Engineering,” Matter, vol. 1, no. 3, pp. 759–769, Sep. 2019, doi: https://doi.org/10.1016/J.MATT.2019.05.022
- R. Sharma, S. Dutta, S. Sharma, R. Zboril, “Fe 3 O 4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions,” ChemInform, 2016, doi: https://doi.org/10.1002/chin.201630262
- J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, and J. L. Gardea-Torresdey, “Nanomaterials and the environment: A review for the biennium 2008-2010,” J. Hazard. Mater., vol. 186, no. 1, pp. 1–15, Feb. 2011, doi: https://doi.org/10.1016/J.JHAZMAT.2010.11.020
- C. W. Lim and I. S. Lee, “Magnetically recyclable nanocatalyst systems for the organic reactions,” Nano Today, vol. 5, no. 5, pp. 412–434, 2010, doi: https://doi.org/10.1016/J.NANTOD.2010.08.008
- B. Rahmani Vahid, M. Haghighi, J. Toghiani, and S. Alaei, “Hybrid-coprecipitation vs. combustion synthesis of Mg-Al spinel based nanocatalyst for efficient biodiesel production,” Energy Convers. Manag., vol. 160, pp. 220–229, 2018, doi: https://doi.org/10.1016/J.ENCONMAN.2018.01.030
- S. Tazikeh, A. Akbari, A. Talebi, “Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method,” Materials Science-Poland, vol. 32, no. 1, pp. 98–101, 2014, doi: https://doi.org/10.2478/s13536-013-0164-y
- R. Shelat, S. Chandra, and A. Khanna, “Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications,” Int. J. Biol. Macromol., vol. 110, pp. 357–365, Apr. 2018, doi: https://doi.org/10.1016/J.IJBIOMAC.2017.09.067
- J. M. Costa, A. F. de Almeida Neto, “Nanocatalysts deposition assisted by supercritical carbon dioxide technology: A review,” Synth. Met., vol. 271, p. 116627, Jan. 2021, doi: https://doi.org/10.1016/J.SYNTHMET.2020.116627
- M. W. Iqbal, Y. Yu, D. S. A. Simakov, “Enhancing the surface area stability of the cerium oxide reverse water gas shift nanocatalyst via reverse microemulsion synthesis,” Catal. Today, vol. 407, pp. 230–243, 2023, doi: https://doi.org/10.1016/J.CATTOD.2021.11.029
- C. Liu, Y. Li, Y. Zhang, X. Zeng, J. Chen, and L. Shao, “Synthesis of Ni-CeO2 nanocatalyst by the microemulsion-gas method in a rotor-stator reactor,” Chem. Eng. Process. - Process Intensif., vol. 130, pp. 93–100, Aug. 2018, doi: https://doi.org/10.1016/J.CEP.2018.06.001
- A. M. Prodan, S. L. Iconaru, C. S. Ciobanu, M. C. Chifiriuc, M. Stoicea, D. Predoi, “Iron oxide magnetic nanoparticles: Characterization and toxicity evaluation by in vitro and in vivo assays,” J. Nanomater., 2013, doi: https://doi.org/10.1155/2013/587021
- Y. H. Chung and S. Jou, “Carbon nanotubes from catalytic pyrolysis of polypropylene,” Mater. Chem. Phys., vol. 92, no. 1, pp. 256–259, 2005, doi: https://doi.org/10.1016/J.MATCHEMPHYS.2005.01.023
- Q. Kong, J. Zhang, “Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene,” Polym. Degrad. Stab., vol. 92, no. 11, pp. 2005–2010, 2007, doi: https://doi.org/10.1016/J.POLYMDEGRADSTAB.2007.08.002
- M. Raffi, A. K. Rumaiz, M. M. Hasan, and S. I. Shah, “Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation,” J. Mater. Res., vol. 22, no. 12, pp. 3378–3384, 2007, doi: https://doi.org/10.1557/JMR.2007.0420
- G. Elordi, M. Olazar, R. Aguado, G. Lopez, M. Arabiourrutia, and J. Bilbao, “Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor,” J. Anal. Appl. Pyrolysis, vol. 79, no. 1–2, pp. 450–455, 2007, doi: https://doi.org/10.1016/J.JAAP.2006.11.010
- J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, no. 4–6, pp. 567–574, 1998, doi: https://doi.org/10.1016/S0009-2614(98)00745-3
- Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B, vol. 105, no. 46, pp. 11424–11431, Nov. 2001, doi: https://doi.org/10.1021/JP012085B
- Y. Homma, T. Yamashita, P. Finnie, M. Tomita, and T. Ogino, “Single-walled carbon nanotube growth on silicon substrates using nanoparticle catalysts,” Japanese J. Appl. Physics, Part 2 Lett., vol. 41, no. 1 A/B, Jan. 2002, doi: https://doi.org/10.1143/JJAP.41.L89/META
- W. Kim et al., “Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes,” ACS Publ., vol. 2, no. 7, pp. 703–708, Jul. 2002, doi: https://doi.org/10.1021/nl025602q
- F. Danafar, A. Fakhru’l-Razi, M. A. M. Salleh, and D. R. A. Biak, “Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review,” Chem. Eng. J., vol. 155, no. 1–2, pp. 37–48, 2009, doi: https://doi.org/10.1016/J.CEJ.2009.07.052
- E. Lamouroux, P. Serp, Y. Kihn, and P. Kalck, “New efficient Fe2O3 and FeMo supported OMCVD catalysts for single wall carbon nanotubes growth,” Catal. Commun., vol. 7, no. 8, pp. 604–609, 2006, doi: https://doi.org/10.1016/J.CATCOM.2006.01.020
- M. H. Khedr, K. S. Abdel Halim, and N. K. Soliman, “Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes,” Appl. Surf. Sci., vol. 255, no. 5 PART 1, pp. 2375–2381, 2008, doi: https://doi.org/10.1016/J.APSUSC.2008.07.096
- V. I. Alexiadis, X. E. Verykios, “Influence of structural and preparation parameters of Fe2O3/Al2O3 catalysts on rate of production and quality of carbon nanotubes,” Mater. Chem. Phys., vol. 117, no. 2–3, pp. 528–535, Oct. 2009, doi: https://doi.org/10.1016/J.MATCHEMPHYS.2009.06.033
- K. Kouravelou and X. Verykios, “Dynamic Study of Gas-Phase Species during Single-Walled Carbon Nanotubes Production by Chemical Vapor Deposition of Ethanol,” ECS Trans., vol. 25, no. 8, pp. 997–1005, Sep. 2009, doi: https://doi.org/10.1149/1.3207698/META
- N. Publications, S. S. Kim, P. B. Amama, T. Fisher, and T. S. Fisher, “Preferential biofunctionalization of carbon nanotubes grown by microwave plasma-enhanced CVD,” ACS Publ., vol. 114, no. 21, pp. 9596–9602, Jun. 2010, doi: https://doi.org/10.1021/jp912092n
- W. Zhao, D. N. Seo, H. T. Kim, and I. J. Kim, “Characterization of multi-walled carbon nanotubes (MWNTs) synthesized by CCVD using zeolite template from acetylene,” J. Ceram. Soc. Japan, vol. 118, no. 1383, pp. 983–988, 2010, doi: https://doi.org/10.2109/JCERSJ2.118.983
- N. D. Hien, “Optical properties of a single quantum well with Pöschl–Teller confinement potential,” Phys. E Low-dimensional Syst. Nanostructures, vol. 145, p. 115504, Jan. 2023, doi: https://doi.org/10.1016/J.PHYSE.2022.115504
- E. Teblum, Y. Gofer, C. L. Pint, and G. D. Nessim, “Role of catalyst oxidation state in the growth of vertically aligned carbon nanotubes,” J. Phys. Chem. C, vol. 116, no. 46, pp. 24522–24528, Nov. 2012, doi: https://doi.org/10.1021/JP305169B
- S. H. Liu et al., “Template effect of hydrolysis of the catalyst precursor on growth of carbon nanotube arrays,” J. Colloid Interface Sci., vol. 374, no. 1, pp. 34–39, May 2012, doi: https://doi.org/10.1016/J.JCIS.2012.02.005
- F. Dillon, M. Copley, A. A. Koós, P. Bishop, and N. Grobert, “Flame spray pyrolysis generated transition metal oxide nanoparticles as catalysts for the growth of carbon nanotubes,” RSC Adv., vol. 3, no. 43, pp. 20040–20045, Nov. 2013, doi: https://doi.org/10.1039/C3RA40773J
- M. Song, B. Liu, S. Huang, and A. Zhou, “Experimental study of seismic performance on three-story prestressed fabricated concrete frame,” Adv. Mater. Res., vol. 250–253, pp. 1287–1292, 2011, doi: https://doi.org/10.4028/www.scientific.net/AMR.250-253.1287
- W. W. Liu, T. Adam, A. Aziz, S. P. Chai, A. R. Mohamed, and U. Hashim, “Formation of carbon nanotubes from methane decomposition: Effect of concentration of Fe3O4 on the diameters distributions,” Adv. Mater. Res., vol. 832, pp. 62–67, 2014, doi: https://doi.org/10.4028/www.scientific.net/AMR.832.62
- S. Shukrullah, M. Y. Naz, N. M. Mohamed, K. A. Ibrahim, A. Ghaffar, and N. M. AbdEl-Salam, “Synthesis of MWCNT forests with alumina-supported Fe2O3 catalyst by using a floating catalyst chemical vapor deposition technique,” J. Nanomater., vol. 2019, 2019, doi: https://doi.org/10.1155/2019/4642859
- S. Shukrullah, M. Y. Naz, N. M. Mohamed, K. A. Ibrahim, A. Ghaffar, and N. M. AbdEl-Salam, “Production of bundled CNTs by floating a compound catalyst in an atmospheric pressure horizontal CVD reactor,” Results Phys., vol. 12, pp. 1163–1171, Mar. 2019, doi: https://doi.org/10.1016/J.RINP.2019.01.001
- Y. Suda, T. Iida, H. Takikawa, … T. H.-A. C., and undefined 2016, “Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils,” AIP Conf. Proc, vol. 1709, p. 20008, Feb. 2016, doi: https://doi.org/10.1063/1.4941207
- S. McCaldin, M. Bououdina, D. M. Grant, and G. S. Walker, “The effect of processing conditions on carbon nanostructures formed on an iron-based catalyst,” Carbon, vol. 44, no. 11, pp. 2273–2280, Sep. 2006, doi: https://doi.org/10.1016/J.CARBON.2006.02.030
- F. Le Normand et al., “Aligned carbon nanotubes catalytically grown on iron-based nanoparticles obtained by laser-induced CVD,” Appl. Surf. Sci., vol. 254, no. 4, pp. 1058–1066, Dec. 2007, doi: https://doi.org/10.1016/J.APSUSC.2007.08.054
- R. Atchudan, B. Cha, N. Lone, J. Kim, J. Joo, “Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles,” Korean Journal of Chemical Engineering, vol. 36, no. 1, pp. 157–165, 2018, doi: https://doi.org/10.1007/s11814-018-0200-z
- J. Z. Wen et al., “Experimental study of catalyst nanoparticle and single walled carbon nanotube formation in a controlled premixed combustion,” J. Mater. Chem., doi: https://doi.org/10.1039/b717067j
- T. Tsuji, K. Hata, D. N. Futaba, S. Sakurai, “Additional obstacles in carbon nanotube growth by gas-flow directed chemical vapour deposition unveiled through improving growth density,” Nanoscale Adv., vol. 1, no. 10, pp. 4076–4081, Oct. 2019, doi: https://doi.org/10.1039/C9NA00209J
- S. Shukrullah, N. M. Mohamed, Y. Khan, M. Y. Naz, A. Ghaffar, I. Ahmad, “Effect of Gas Flowrate on Nucleation Mechanism of MWCNTs for a Compound Catalyst,” J. Nanomater., vol. 2017, 2017, doi: https://doi.org/10.1155/2017/3407352
- M. Morel et al., “Mineral magnetite as precursor in the synthesis of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption,” International Journal of Hydrogen Energy, 2015, doi: https://doi.org/10.1016/j.ijhydene.2015.09.112
- Z. Aslam, X. Li, R. Brydson, B. Rand, U. Falke, and A. Bleloch, “Supported Catalytic Growth of SWCNTs using the CVD Method,” J. Phys. Conf. Ser., vol. 26, no. 1, p. 139, 2006, doi: https://doi.org/10.1088/1742-6596/26/1/033
- X. Wang et al., “Coating alumina on catalytic iron oxide nanoparticles for synthesizing vertically aligned carbon nanotube arrays,” ACS Appl. Mater. Interfaces, vol. 3, no. 11, pp. 4180–4184, 2011, doi: https://doi.org/10.1021/AM201082M
- Y. S. Cho, G. S. Choi, S. Y. Hong, and D. Kim, “Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition,” J. Cryst. Growth, vol. 243, no. 1, pp. 224–229, 2002, doi: https://doi.org/10.1016/S0022-0248(02)01496-3
- Y. Kobayashi, H. Nakashima, D. Takagi, and Y. Homma, “CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst,” Thin Solid Films, vol. 464–465, pp. 286–289, 2004, doi: https://doi.org/10.1016/J.TSF.2004.06.045
- L. Jodin, A. C. Dupuis, E. Rouvière, and P. Reiss, “Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition,” J. Phys. Chem. B, vol. 110, no. 14, pp. 7328–7333, 2006, doi: https://doi.org/10.1021/JP056793Z
- P. N. Minh, N. Van Chuc, P. N. Hong, N. T. T. Tam, P. H. Khoi, “New technique for the synthesis of carbon nanotubes,” J. Korean Phys. Soc., vol. 53, no. 5, pp. 2725–2730, 2008, doi: https://doi.org/10.3938/JKPS.53.2725
- D. Roy and K. Ram, “Magnetite nanoparticles by organic-phase synthetic route for carbon nanotube growth,” Synth. Met., vol. 159, no. 3–4, pp. 343–346, Feb. 2009, doi: https://doi.org/10.1016/J.SYNTHMET.2008.09.010
- M. Felisberto, L. Sacco, I. Mondragon, G. H. Rubiolo, R. J. Candal, and S. Goyanes, “The growth of carbon nanotubes on large areas of silicon substrate using commercial iron oxide nanoparticles as a catalyst,” Mater. Lett., vol. 64, no. 20, pp. 2188–2190, 2010, doi: https://doi.org/10.1016/J.MATLET.2010.07.016
- K. Mandel et al., “Customised transition metal oxide nanoparticles for the controlled production of carbon nanostructures,” RSC Adv., doi: https://doi.org/10.1039/c2ra01324j
- M. Kushida, T. Koide, I. Osada, Y. Imaizumi, K. Kawasaki, and T. Sugawara, “Fabrication of Fe3O4/SiO2 core-shell nanoparticle monolayer as catalyst for carbon nanotube growth using Langmuir-Blodgett technique,” Thin Solid Films, vol. 537, pp. 252–255, Jun. 2013, doi: https://doi.org/10.1016/J.TSF.2013.04.031
- M. Ohashi, T. Sugawara, K. Kawasaki, and M. Kushida, “Synthesis and diameter control of vertically-aligned carbon nanotube growth from Langmuir-Blodgett films deposited Fe3O4@SiO 2 core-shell nanoparticles,” Jpn. J. Appl. Phys., vol. 53, no. 2, 2014, doi: https://doi.org/10.7567/JJAP.53.02BD09/META
- T. Thanh Cao et al., “Effects of ferrite catalyst concentration and water vapor on growth of vertically aligned carbon nanotube,” Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, doi: https://doi.org/10.1088/2043-6262/5/4/045009
- A. Baliyan, Y. Nakajima, T. Fukuda, T. Uchida, T. Hanajiri, and T. Maekawa, “Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles,” J. Am. Chem. Soc., vol. 136, no. 3, pp. 1047–1053, Jan. 2014, doi: https://doi.org/10.1021/JA410794P
- W. Zhao, B. Basnet, S. Kim, and I. J. Kim, “Synthesis of vertically aligned carbon nanotubes on silicalite-1 monolayer-supported substrate,” J. Nanomater., vol. 2014, 2014, doi: https://doi.org/10.1155/2014/327398
- W. Zhao, D. N. Seo, J. Gong, S. Kim, and I. J. Kim, “Synthesis of vertically-aligned CNT arrays from diameter-controlled Fe 3O4 nanoparticles,” J. Ceram. Soc. Japan, vol. 122, no. 1423, pp. 187–191, 2014, doi: https://doi.org/10.2109/JCERSJ2.122.187
- D. M. Tang et al., “Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy,” ACS Nano, vol. 8, no. 1, pp. 292–301, Jan. 2014, doi: https://doi.org/10.1021/NN403927Y
- K. Nakamura, N. Kuriyama, S. Takagiwa, T. Sato, and M. Kushida, “Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique,” Jpn. J. Appl. Phys., vol. 55, no. 3, Mar. 2016, doi: https://doi.org/10.7567/JJAP.55.03DD06/META
- T. Endah Saraswati, O. Dewi Indah Prasiwi, A. Masykur, and M. Anwar, “Bifunctional catalyst of graphite-encapsulated iron compound nanoparticle for magnetic carbon nanotubes growth by chemical vapor deposition,” AIP Conference Proceedings, vol. 1788, Jan. 2017, doi: https://doi.org/10.1063/1.4968282
- M. C. Altay and S. Eroglu, “Thermodynamic analysis and chemical vapor deposition of multi-walled carbon nanotubes from pre-heated CH4 using Fe2O3 particles as catalyst precursor,” J. Cryst. Growth, vol. 364, pp. 40–45, 2013, doi: https://doi.org/10.1016/J.JCRYSGRO.2012.11.062
- S. S. Lee et al., “Control over the diameter, length, and structure of carbon nanotube carpets using aluminum ferrite and iron oxide nanocrystals as catalyst precursors,” J. Phys. Chem. C, vol. 116, no. 18, pp. 10287–10295, May 2012, doi: https://doi.org/10.1021/JP212404J
- B. Bahrami, A. Khodadadi, Y. Mortazavi, and M. Esmaieli, “Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles,” Appl. Surf. Sci., vol. 257, no. 23, pp. 9710–9716, Sep. 2011, doi: https://doi.org/10.1016/J.APSUSC.2011.05.086
- N. T. Alvarez et al., “Uniform large diameter carbon nanotubes in vertical arrays from premade near-monodisperse nanoparticles,” ACS Publ., vol. 23, no. 15, pp. 3466–3475, Aug. 2011, doi: https://doi.org/10.1021/cm200664g
- S. Han et al., “Diameter-controlled synthesis of discrete and uniform-sized single-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded in zirconia nanoparticle arrays as catalysts,” J. Phys. Chem. B, vol. 108, no. 24, pp. 8091–8095, Jun. 2004, doi: https://doi.org/10.1021/JP037634N
- H. Ago, K. Nakamura, S. Imamura, and M. Tsuji, “Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO,” Chem. Phys. Lett., vol. 391, no. 4–6, pp. 308–313, Jun. 2004, doi: https://doi.org/10.1016/J.CPLETT.2004.04.110
- P. Pandey, M. Datta, B. D. Malhotra, “Prospects of nanomaterials in biosensors,” Anal. Lett., vol. 41, no. 2, pp. 159–209, Jan. 2008, doi: https://doi.org/10.1080/00032710701792620
- X. P. Zou et al., “Selective growth of carbon nanotube on silicon substrates,” Trans. Nonferrous Met. Soc. China, 2006, doi: https://doi.org/10.1016/S1003-6326(06)60214-8
- X. Liu, T. P. Bigioni, Y. Xu, A. M. Cassell, and B. A. Gruden, “Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates,” J. Phys. Chem. B, vol. 110, no. 41, pp. 20102–20106, Oct. 2006, doi: https://doi.org/10.1021/JP0647378
- R. D. Bennett, A. J. Hart, A. C. Miller, P. T. Hammond, D. J. Irvine, and R. E. Cohen, “Creating patterned carbon nanotube catalysts through the microcontact printing of block copolymer micellar thin films,” Langmuir, vol. 22, no. 20, pp. 8273–8276, Sep. 2006, doi: https://doi.org/10.1021/LA061054A
- R. D. Bennett, A. J. Hart, R. E. Cohen, “Controlling the morphology of carbon nanotube films by varying the areal density of catalyst nanoclusters using block-copolymer micellar thin films,” Adv. Mater., vol. 18, no. 17, pp. 2274–2279, 2006, doi: https://doi.org/10.1002/ADMA.200600975
- S. M. Tan, S. P. Chai, W. W. Liu, and A. R. Mohamed, “Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane,” J. Alloys Compd., vol. 477, no. 1–2, pp. 785–788, May 2009, doi: https://doi.org/10.1016/J.JALLCOM.2008.10.114