Vol. 22 Núm. 2 (2023): Revista UIS Ingenierías
Artículos

Pirólisis del tereftalato de polietileno y poliestireno para la síntesis de nanoestructuras de carbono: una revisión bibliométrica

Katerine A. Ordoñez-Agredo
Universidad del Cauca
Diego F. Coral-Coral
Universidad del Cauca
Jorge E. Rodríguez-Páez
Universidad del Cauca
Jesús E. Diosa-Astaiza
Universidad del Valle
Edgar Mosquera-Vargas
Universidad del Valle

Publicado 2023-04-03

Palabras clave

  • tereftalato de polietileno,
  • poliestireno,
  • pirolisis,
  • nanotubos de carbono

Cómo citar

Ordoñez-Agredo , K. A. ., Coral-Coral, D. F., Rodríguez-Páez, J. E., Diosa-Astaiza, J. E., & Mosquera-Vargas , E. . (2023). Pirólisis del tereftalato de polietileno y poliestireno para la síntesis de nanoestructuras de carbono: una revisión bibliométrica. Revista UIS Ingenierías, 22(2), 29–42. https://doi.org/10.18273/revuin.v22n2-2023003

Resumen

Este artículo se presenta una revisión bibliométrica del proceso de pirólisis de dos tipos de polímeros: tereftalato de polietileno y poliestireno (PET y PS, por sus siglas en inglés), para identificar las condiciones necesarias y así optimizar el proceso de pirólisis, garantizando la producción mayoritaria del producto gaseoso con el objetivo de llevar a cabo un segundo proceso, el crecimiento de nanoestructuras de carbono. Precursores gaseosos como el metano, acetileno y etileno son hidrocarburos esenciales para el crecimiento de dichas nanoestructuras, de las que se destacan según la literatura, una variedad de nanotubos de carbono de pared simple, de pared doble, y de pared múltiple (SWCNT, DWCNT y MWCNT, por sus siglas en inglés) y nano fibras de carbono (CNF, por sus siglas en inglés). En este trabajo se realiza un análisis de las condiciones más relevantes para optimizar el proceso de pirólisis de polímeros, es decir, disminuir la temperatura y tiempos de reacción y mejorar la composición de los productos obtenidos del proceso pirolítico. Finalmente se dan a conocer los reportes más relevantes de la pirolisis de los polímeros expuestos en la literatura.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. F. Gao, “Pyrolysis of waste plastics into fuels,” tesis doctoral, University of Canterbury, Nueva Zelanda, 2010, Accessed: Sep. 23, 2022. [En línea]. Disponible en: https://sci-hub.ren/http://ir.canterbury.ac.nz/handle/10092/4303
  2. G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, M. Olazar, “Recent advances in the gasification of waste plastics. A critical overview,” Renew. Sustain. Energy Rev., vol. 82, pp. 576–596, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.032
  3. “Hoy en día se produce el doble de desechos plásticos en el mundo que hace 20 años.” https://www.larepublica.co/globoeconomia/hoy-en-dia-se-produce-el-doble-de-desechos-plasticos-en-el-mundo-que-hace-20-anos-3310507
  4. V. Sinha, M. R. Patel, and J. V. Patel, “Pet Waste Management by Chemical Recycling: A Review,” J. Polym. Environ, vol. 18, no. 1, pp. 8–25, Sep. 2008, doi: https://doi.org/10.1007/S10924-008-0106-7
  5. S. Al-Salem, A. Antelava, A. Constantinou, G. Manos, A. Dutta, S. Majed Sultan Al-Salem, “Una revisión sobre la pirólisis térmica y catalítica de residuos sólidos plásticos (PSW),” Rev. medioambiente, 2017, Accessed: Sep. 23, 2022, doi: https://doi.org/10.1016/j.jenvman.2017.03.084
  6. H. D. Lim et al., “Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode,” Adv. Mater., vol. 25, no. 9, pp. 1348–1352, 2013, doi: https://doi.org/10.1002/ADMA.201204018
  7. X. Zang, Q. Zhou, J. Chang, Y. Liu, and L. Lin, “Graphene and carbon nanotube (CNT) in MEMS/NEMS applications,” Microelectron. Eng., vol. 132, pp. 192–206, Jan. 2015, doi: https://doi.org/10.1016/J.MEE.2014.10.023
  8. R. Thahir, A. Altway, S. R. Juliastuti, and Susianto, “Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column,” Energy Reports, vol. 5, pp. 70–77, 2019, doi: https://doi.org/10.1016/J.EGYR.2018.11.004
  9. F. A. Gallegos, “Depolimerización de PET (tereftalato de polietileno) mediante bloqueo de escisión de cadena polimérica como alternativa para su reciclaje químico,” trabajo fin de curso, 2019. [En línea]. Disponible en: https://sci-hub.ren/http://repositorio.puce.edu.ec/handle/22000/16249
  10. K. R. Cardona, “Análisis del reciclaje químico como alternativa tecnológica para la valorización y disposición final de residuos plásticos post-consumo,” trabajo fin de programa, 2017. [En línea]. Disponible en: https://sci-hub.ren/https://repository.unimilitar.edu.co/handle/10654/16986
  11. Lens, “Lens Scholarly Search: PET pyrolysis.” [En línea]. Disponible en: https://www.lens.org/lens/search/scholar/list?q=PET%20pyrolysis&p=3&n=10&s=_score&d=%2B&f=false&e=false&l=en&authorField=author&dateFilterField=publishedDate&orderBy=%2B_score&presentation=false&preview=true&stemmed=true&useAuthorId=false&publishedDate.fr
  12. J. A. Conesa, A. Marcilla, R. Font, and J. A. Caballero, “Thermogravimetric studies on the thermal decomposition of polyethylene,” J. Anal. Appl. Pyrolysis, vol. 36, no. 1, pp. 1–15, Apr. 1996, doi: https://doi.org/10.1016/0165-2370(95)00917-5
  13. M. Castells, “Redes de indignación y esperanza,” 2012, Cuadernos de Geografía: Revista Colombiana de Geografía, [En línea]. Disponible en: https://sci-hub.ren/https://www.academia.edu/download/38935740/art31.pdf
  14. A. Demirbas, G. Arin, “Una visión general de la pirólisis de biomasa,” Energy Sources, vol. 24, no. 5, pp. 471-482, 2002, [En línea]. Disponible en: https://sci-hub.ren/https://www.tandfonline.com/doi/abs/10.1080/00908310252889979
  15. J. B. Mooney and S. B. Radding, “Spray pyrolysis processing.,” Annu. Rev. Mater. Sci., vol. 12, pp. 81–101, 1982, doi: https://doi.org/10.1146/ANNUREV.MS.12.080182.000501
  16. S. Kloss et al., “Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties,” J. Environ. Qual., vol. 41, no. 4, pp. 990–1000, 2012, doi: https://doi.org/10.2134/JEQ2011.0070
  17. F. L. Carrasquero, Fundamentos de polímeros. Universidad de los Andes: Merida, 2004. [En línea]. Disponible en: http://www.saber.ula.ve/bitstream/handle/123456789/16700/polimeros.pdf;jsessionid=00474486C6264FD54FB5C5BEE429C247?sequence=1
  18. I. J. Fernández, “Polímeros en solución y aplicación de los polímeros en la Industria petrolera”, reviberpol. [En línea]. Disponible en: https://reviberpol.files.wordpress.com/2019/08/previos-fernandez.pdf
  19. M. Beltrán Rico, A. Marcilla Gomis, Tecnología de polímeros. Publicaciones de la Universidad de Alicante: España, 2012.
  20. M. Sekar, V. Kumar, A. Pugazhendhi, S. Nižetić, T.R. Praveenkumar, “Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design,” vol. 302, doi: https://doi.org/10.1016/j.jenvman.2021.114046
  21. F. Billmeyer, Ciencia de los polímeros. Wiley: España, 2020.
  22. B. Amaya Pinos, “Obtención de combustibles a partir de Tereftalato de Polietileno (PET) a escala de laboratorio mediante procesos de pirólisis y gasificación,” trabajo fin de grado, Universidad Politécnica Salesiana, 2020.
  23. A. S. Figueroa-Infante, E. Fonseca-Santanilla, “Estudio de material reciclado para reparar fisuras y su aplicación en un pavimento en Bogotá,” Épsilon, vol. 24, 2015.
  24. G. P. Karayannidis, D. S. Achilias, “Chemical Recycling of Poly(ethylene terephthalate),” Macromol. Mater. Eng., vol. 292, no. 2, pp. 128–146, 2007, doi: https://doi.org/10.1002/mame.200600341
  25. S. Anuar Sharuddin, F. Abnisa, W. Wan Daud, M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Conversion and Management, vol. 115, pp. 308-326, 2016, doi: https://doi.org/10.1016/j.enconman.2016.02.037
  26. Y. Liu, J. Qian, J. Wang, “Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction,” Fuel Process. Technol., vol. 63, no. 1, pp. 45–55, 2000, doi: https://doi.org/10.1016/S0378-3820(99)00066-1
  27. Y. Sakata, M. A. Uddin, A. Muto, “Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts,” J. Anal. Appl. Pyrolysis, vol. 51, no. 1–2, pp. 135–155, 1999, doi: https://doi.org/10.1016/S0165-2370(99)00013-3
  28. J. M. Saad, M. A. Nahil, P. T. Williams, “Influence of process conditions on syngas production from the thermal processing of waste high density polyethylene,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 35–40, 2015, doi: https://doi.org/10.1016/J.JAAP.2014.09.027
  29. W. Kaminsky, J. S. Kim, “Pyrolysis of mixed plastics into aromatics,” J. Anal. Appl. Pyrolysis, vol. 51, no. 1–2, pp. 127–134, 1999, doi: https://doi.org/10.1016/S0165-2370(99)00012-1
  30. G. Elordi et al., “Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor,” J. Anal. Appl. Pyrolysis, vol. 85, no. 1–2, pp. 345–351, May 2009, doi: https://doi.org/10.1016/J.JAAP.2008.10.015
  31. K. Murthy, R. J. Shetty, and K. Shiva, “Plastic waste conversion to fuel: a review on pyrolysis process and influence of operating parameters,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, doi: https://doi.org/10.1080/15567036.2020.1818892
  32. J. M. Heikkinen, J. C. Hordijk, W. De Jong, H. Spliethoff, “Thermogravimetry as a tool to classify waste components to be used for energy generation,” J. Anal. Appl. Pyrolysis, vol. 71, no. 2, pp. 883–900, 2004, doi: https://doi.org/10.1016/J.JAAP.2003.12.001
  33. S. S. Park, D. K. Seo, S. H. Lee, T. U. Yu, J. Hwang, “Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor,” J. Anal. Appl. Pyrolysis, vol. 97, pp. 29–38, 2012, doi: https://doi.org/10.1016/J.JAAP.2012.06.009
  34. R. Miandad, M. A. Barakat, M. Rehan, A. S. Aburiazaiza, I. M. I. Ismail, and A. S. Nizami, “Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts,” Waste Manag., vol. 69, pp. 66–78, 2017, doi: https://doi.org/10.1016/J.WASMAN.2017.08.032
  35. M. Olazar, G. Lopez, M. Amutio, G. Elordi, R. Aguado, J. Bilbao, “Influence of FCC catalyst steaming on HDPE pyrolysis product distribution,” J. Anal. Appl. Pyrolysis, vol. 85, no. 1–2, pp. 359–365, 2009, doi: https://doi.org/10.1016/J.JAAP.2008.10.016
  36. P. Amar, “Empleo de catalizadores heterogéneos para el aprovechamiento de biomasa lignocelulósica mediante pirólisis,” tesis doctoral, Universidad Nacional del Sur, Argentina, 2016.
  37. D. Alviro Dobón, J. J. Manyá Cervelló, C. Di Stasi, “Craqueo y reformado de vapores de pirólisis en un lecho de biochar como catalizador de bajo coste,” trabajo Fin de Master, Universidad de Zaragoza, España, 2018.
  38. R. N. Martínez, “Pirólisis catalítica de polietileno: estudio de la evolución de la distribución de productos y desactivación del catalizador,” tesis doctoral, Universidad de Alicante (UA), España, 2007.
  39. F. Botello, E. Camporredondo, and F. Avalos, “Pirólisis del polietileno en presencia y ausencia de catalizadores arcillosos,” Prospectiva, vol. 8, no. 1, pp. 95–100, 2010.
  40. M. Zhang, J. Ma, G. Wen, Q. Yang, B. Su, Q. Ren, “Producción de gas a partir de tereftalato de polietileno mediante plasma de arco rotatorio,” Chemical Engineering and Processing - Process Intensification, vol. 128, pp. 257-262, 2018, doi: https://doi.org/10.1016/j.cep.2018.04.021
  41. C. Li, F. Ataei, F. Atashi, X. Hu, M. Gholizadeh, “Catalytic pyrolysis of polyethylene terephthalate over zeolite catalyst: Characteristics of coke and the products,” Int. J. Energy Res., vol. 45, no. 13, pp. 19028–19042, 2021, doi: https://doi.org/10.1002/er.7078
  42. A. Cherednichenko, E. Markova, and ... T. S., “Destrucción termocatalítica de polímeros de poliolefina en presencia de LnVO3 y LnVO4,” Catal. Today, vol. 379, pp. 80-86, 2021, doi: https://doi.org/10.1016/j.cattod.2021.03.012
  43. M. Havelcová, O. Bičáková, I. Sýkorová, Z. Weishauptová, and A. Melegy, “Caracterización de productos de pirólisis de carbón con adición de tereftalato de polietileno,” Proces. Combust., 2016, doi: https://doi.org/10.1016/j.fuproc.2016.08.022
  44. M. Artetxe, G. Lopez, M. Amutio, G. Elordi, M. Olazar, J. Bilbao, “Operating conditions for the pyrolysis of poly-(ethylene terephthalate) in a conical spouted-bed reactor,” Ind. Eng. Chem. Res., vol. 49, no. 5, pp. 2064–2069, 2010, doi: https://doi.org/10.1021/IE900557C
  45. T. Maqsood, J. Dai, Y. Zhang, M. Guang, B. Li, “Pirólisis de especies plásticas: una revisión de recursos y productos,” Journal of Analytical and Applied Pyrolysis, vol. 159, 2021, doi: https://doi.org/10.1016/j.jaap.2021.105295
  46. Ö. Çepelioğullar, A. E. Pütün, “Utilization of Two Different Types of Plastic Wastes from Daily and Industrial Life,” Proceeding Of THE ICOEST’2013, pp. 694-706, 2013.
  47. S. FakhrHoseini and M. Dastanian, “Predicción de productos de pirólisis de PE, PP y PET utilizando el modelo de coeficiente de actividad NRTL,” Journal of Chemistry, 2013, doi: https://doi.org/10.1155/2013/487676
  48. H. Jia, H. Ben, Y. Luo, R. Wang, “Catalytic Fast Pyrolysis of Poly (Ethylene Terephthalate) (PET) with Zeolite and Nickel Chloride,” Polymers, vol. 12, no. 3, 2020, doi: https://doi.org/10.3390/polym12030705
  49. A. López, I. De Marco, B. Caballero, “Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud,” Applied Catalysis B: Environmental, vol. 104, pp. 211-219, 2011, doi: https://doi.org/10.1016/j.apcatb.2011.03.030