Vol. 21 No. 4 (2022): Revista UIS Ingenierías
Articles

Characterization of a fiber-reinforced geopolymeric concrete for its application in construction elements

Armando Vargas-López
Universidad del Valle
Walter Vásquez-Delgado
Universidad del Valle
William Valencia-Saavedra
Universidad del Valle
Ruby Mejía de Gutiérrez
Universidad del Valle
3D

Published 2022-10-23

Keywords

  • geopolymeric concrete,
  • fly ash,
  • fiber-reinforced concrete,
  • steel fiber

How to Cite

Vargas-López , A. ., Vásquez-Delgado , W. ., Valencia-Saavedra , W. ., & Mejía de Gutiérrez , R. . (2022). Characterization of a fiber-reinforced geopolymeric concrete for its application in construction elements. Revista UIS Ingenierías, 21(4), 39–52. https://doi.org/10.18273/revuin.v21n4-2022004

Abstract

This article presents an analysis of the physical-mechanical characterization of a fiber-reinforced geopolymeric concrete, whose HCV matrix is ​​made up of 90% fly ash (CV) and 10% ordinary portland cement (OPC), using as an alkaline activator a solution composed of silicate and sodium hydroxide (NaOH, Na2SiO3) and water. The reinforcement used was SikaFiber Xorex steel fibers incorporated into the matrix in proportions of 50 and 75 kg/m3. The HCV-50 mix reported a compressive strength of 26.77 MPa at 28 days of curing, classifying it as structural concrete according to NSR-10. At the same curing age, indirect tensile strength of 3.49 MPa, modulus of elasticity of 29.32 GPa, flexural strength of 5.15 MPa and toughness up to cracking deflection (δf) of 1971,9 N.mm were obtained. This mixture, considered optimal, was used in the manufacture of concrete slabs, which presented a rupture deflection δf of 4.45 mm, ultimate deflection of 16.15 mm, maximum load supported 15.6 kN, tenacity of 49464, 8 N.mm up to δf and 145847.3 N.mm up to 3 times δf. The fiber-reinforced geopolymeric material is also proposed to be used in the production of shotcrete (Shotcrete), and in the construction of lightweight tiles.

 

Downloads

Download data is not yet available.

References

  1. V. Afroughsabet, L. Biolzi, T. Ozbakkaloglu, “High-performance fiber-reinforced concrete: a review”, J. Mater. Sci., vol. 51, n.o 14, pp. 6517-6551, 2016, doi: https://doi.org/10.1007/s10853-016-9917-4
  2. L. Rogers, “La enorme fuente de emisiones de CO2 que está por todas partes y que quizás no conocías”, BBC News, vol. 17, p. 12, 2018.
  3. D. N. Huntzinger, T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies”, J. Clean. Prod., vol. 17, n.o 7, pp. 668-675, 2009, doi: https://doi.org/10.1016/j.jclepro.2008.04.007
  4. J. L. Provis, S. A. Bernal, “Geopolymers and Related Alkali-Activated Materials”, Annu. Rev. Mater. Res., vol. 44, n.o 1, pp. 299-327, 2014, doi: https://doi.org/10.1146/annurev-matsci-070813-113515
  5. N. Ranjbar y M. Zhang, “Fiber-reinforced geopolymer composites: A review”, Cem. Concr. Compos., vol. 107, p. 103498, 2020, doi: https://doi.org/10.1016/j.cemconcomp.2019.103498
  6. F. Liu, W. Ding, Y. Qiao, “Experimental investigation on the tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder”, Constr. Build. Mater., vol. 241, p. 118000, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.118000
  7. O. Rojas-Duque, L. M. Espinosa, R. A. Robayo-Salazar, R. Mejía de Gutiérrez, “Alkali-Activated Hybrid Concrete Based on Fly Ash and Its Application in the Production of High-Class Structural Blocks”, Crystals, vol. 10, n.o 10, Art. n.o 10, 2020, doi: https://doi.org/10.3390/cryst10100946
  8. Y. T. H. Cu, M. V. Tran, C. H. Ho, P. H. Nguyen, “Relationship between workability and rheological parameters of self-compacting concrete used for vertical pump up to supertall buildings”, J. Build. Eng., vol. 32, p. 101786, 2020, doi: https://doi.org/10.1016/j.jobe.2020.101786
  9. Toxement, “Guía básica para el concreto bombeado - PDF Descargar libre”. [En línea]. Disponible en: https://docplayer.es/203946647-Guia-basica-para-el-concreto-bombeado.html
  10. A. Koenig et al., “Flexural behaviour of steel and macro-PP fibre reinforced concretes based on alkali-activated binders”, Constr. Build. Mater., vol. 211, pp. 583-593, jun. 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.03.227
  11. M. M. Al-mashhadani, O. Canpolat, Y. Aygörmez, M. Uysal, S. Erdem, “Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites”, Constr. Build. Mater., vol. 167, pp. 505-513, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.02.061
  12. M. Alshaaer et al., “Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre - Reinforced geopolymer composite”, Appl. Clay Sci., vol. 143, pp. 125-133, 2017, doi: https://doi.org/10.1016/j.clay.2017.03.030
  13. M. Amran et al., “Fiber-reinforced alkali-activated concrete: A review”, J. Build. Eng., vol. 45, p. 103638, 2022, doi: https://doi.org/10.1016/j.jobe.2021.103638
  14. N. Ranjbar, M. Mehrali, M. Mehrali, U. J. Alengaram, M. Z. Jumaat, “Graphene nanoplatelet-fly ash based geopolymer composites”, Cem. Concr. Res., vol. 76, pp. 222-231, 2015, doi: https://doi.org/10.1016/j.cemconres.2015.06.003
  15. K. T. Nguyen, N. Ahn, T. A. Le, K. Lee, “Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete”, Constr. Build. Mater., vol. 106, pp. 65-77, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2015.12.033
  16. P. Nath, P. K. Sarker, “Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete”, Constr. Build. Mater., vol. 130, pp. 22-31, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2016.11.034
  17. J. W. Cárdenas Pulido, “Desempeño en cortante por tensión diagonal sobre muretes reforzados basados en geopolímeros”, 2017.
  18. B. Singh, G. Ishwarya, M. Gupta, S. K. Bhattacharyya, “Geopolymer concrete: A review of some recent developments”, Constr. Build. Mater., vol. 85, pp. 78-90, 2015, doi: https://doi.org/10.1016/j.conbuildmat.2015.03.036
  19. S. Haruna, B. S. Mohammed, M. M. A. Wahab, M. U. Kankia, M. Amran, A. M. Gora, “Long-Term Strength Development of Fly Ash-Based One-Part Alkali-Activated Binders”, Materials, vol. 14, n.o 15, Art. n.o 15, 2021, doi: https://doi.org/10.3390/ma14154160
  20. W. G. Valencia-Saavedra, R. A. Robayo-Salaza, R. M. de Gutiérrez, “Propiedades de ingeniería de concretos híbridos activados alcalinamente basados en altos contenidos de ceniza volante: un análisis a largas edades”, Rev. UIS Ing., vol. 20, n.o 3, 2021, doi: https://doi.org/10.18273/revuin.v20n3-2021001
  21. A. Bhutta, P. H. R. Borges, C. Zanotti, M. Farooq, y N. Banthia, “Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers”, Cem. Concr. Compos., vol. 80, pp. 31-40, jul. 2017, doi: https://doi.org/10.1016/j.cemconcomp.2016.11.014
  22. “Manual de diseño y construcción de túneles de carretera, capítulo 8: Sistemas de sostenimiento”, Secretaría de comunicaciones y transportes de los Estados Unidos Mexicanos, 2016.