Analysis of variance and variation coefficient as repeatability criteria of a cookstove based on pellets gasification
Published 2023-07-28
Keywords
- improved biomass cookstoves,
- wood pellets,
- statistical repeatability,
- water boiling test protocol,
- variation coefficient
- analysis of variance ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In this work is presented a repeatability study applied to a cookstove based on wood pellets gasification (19.03 MJ/kg). The analysis is carried out under a modified water boiling test (WBT 4.2.3). The repeatability of the gasification-based cookstove was assessed by means of two methodologies, such as the variation coefficient (CV, %) and the analysis of variance (ANOVA). The answer variables evaluated under repeatability were the efficiency ( , %), power (P, kW), fuel consumption (FC, g/min), fuel specific consumption (SFC, g/L), energy specific consumption (SFEC, kJ/L), and energy specific consumption per unit time (SFCT, kJ/L-min). By the CV analysis, the global average CV was 4.69% ± 0.87%. Therefore, as CV ≤ 5%, it is concluded that the gasification based cookstove is statistically repeatable. Concerning the ANOVA, the P-values of the variables studied were higher than 0.05 (P>0.05), thereby, it is stated that the improved cookstove is repeatable with a confidence level of 95%. Consequently, it is highlighted that the average thermal efficiency reached by the cookstove is ~29% ± 2.25%, with a confidence level of 95%. This thermal efficiency value is comparable with other biomass cookstoves based on gasification reported in the literature with values between 16 and 38%. The methodology and the results of this work constitute a theoretical foundation for assessing future developments of biomass cookstoves since the results reliability found in the prototypes tested at the laboratory level can be quantified and analyzed.
Downloads
References
- Ministerio de Minas y Energías, “Programa De Uso Racional Y Eficiente De Energía Y Fuentes No Convencionales – PROURE. República de Colombia.”
- “Ministerio de Minas y Energía, Unidad de Planeación Minero-Energética. Plan Energético Nacional 2020-2050. La transformación energética que habilita el desarrollo sostenible. 2020.,” Bogotá Colombia, 2020.
- Banco Mundial, “Área de tierra (kilómetros cuadrados) - Colombia.” [En línea]. Disponible en: https://datos.bancomundial.org/indicator/AG.LND.TOTL.K2?locations=CO
- E. Sánchez-Triana, K. Ahmed, A. Yewande, Prioridades ambientales para la reducción de la pobreza en Colombia: Un análisis ambiental del país para Colombia. Banco Mundial, 2007.
- Ministerio de Ambiente y Desarrollo Sostenible, “Lineamientos para un programa nacional de estufas eficientes para cocción con leña. República de Colombia,” 2015.
- Global Alliance for Clean Cookstoves, “The Water Boiling Test,” vol. 2, no. January 2013, 2014.
- S. F. Household Energy and Health Programme, “Controlled Cooking Test ( CCT ),” no. August, pp. 1–8, 2004.
- M. DeFoort, C. L’Orange, C. Kreutzer, N. Lorenz, W. Kamping, J. Alders, “Stove Manufacturers Emissions & Performance Test Protocol (EPTP),” Colorado State University, p. 30, 2009.
- Quality and Technical Supervision Bureau of Beijing Municipality, “General specifications for biomass household stoves - China,” 2008.
- Y. A. Lenis, A. F. Agudelo, J. F. Pérez, “Analysis of statistical repeatability of a fixed bed downdraft biomass gasification facility,” Applied Thermal Engineering, vol. 51, no. 1–2, pp. 1006–1016, 2013, doi: https://doi.org/10.1016/j.applthermaleng.2012.09.046
- H. Gutierrez, Control estadístico de la calidad y Seis Sigma, 3re ed. Mcgrawhill, 2013.
- Y. Wang, M. D. Sohn, A. J. Gadgil, Y. Want, K. M. Lask, and T. W. Kirchstetter, “How many replicate tests do I need? - Variability of cookstove performance and emissions has implications for obtaining useful results,” Lawrence Berkeley national Laboratory, no. 500, 2013.
- C. L’Orange, D. Leith, J. Volckens, M. DeFoort, “A quantitative model of cookstove variability and field performance: Implications for sample size,” Biomass and Bioenergy, vol. 72, pp. 233–241, 2015, doi: https://doi.org/10.1016/j.biombioe.2014.10.031
- T. Makonese, “Heterogeneous stove testing methods for the evaluation of domestic solid-fuel cookstoves,” International Energy Journal, vol. 18, no. 2, pp. 191–205, 2018.
- Clean Cooking Alliance, “Stove and Fuel Testing - FAQ.”
- F. Fachinger, F. Drewnick, R. Gieré, S. Borrmann, “How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions,” Atmospheric Environment, vol. 158, pp. 216–226, 2017, doi: https://doi.org/10.1016/j.atmosenv.2017.03.027
- G. Coulson, R. Bian, E. Somervell, “An investigation of the variability of particulate emissions from woodstoves in New Zealand,” Aerosol and Air Quality Research, vol. 15, no. 6, pp. 2346–2356, 2015, doi: https://doi.org/10.4209/aaqr.2015.02.0111
- ASTM-E691, “Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method”.
- R. Trojanowski, T. Butcher, G. Wei, Y. Celebi, “Repeatability in Particulate and Gaseous Emissions from Pellet Stoves for Space Heating,” Energy and Fuels, vol. 32, no. 3, pp. 3543–3550, 2018, doi: https://doi.org/10.1021/acs.energyfuels.7b03977
- C. Keily De La Hoz, J. F. Pérez, E. L. C. Arrieta, “Design of a top-lit up-draft micro-gasifier biomass cookstove by thermodynamic analysis and fluent modeling,” International Journal of Renewable Energy Research, vol. 7, no. 4, pp. 2172–2187, 2017, doi: https://doi.org/10.20508/ijrer.v7i4.6268.g7265
- E. Llamosa, Marcela. Botero, “Promedios y rangos para el aseguramiento de la calidad de los resultados de calibración de acuerdo con la norma técnica NTC- ISO/IEC 17025,” Scientia et Technica, no. 35, pp. 455–460, 2007, doi: https://doi.org/10.22517/23447214.5479
- J. F. Pérez, M. R. Pelaez-Samaniego, M. Garcia-Perez, “Torrefaction of Fast-Growing Colombian Wood Species,” Waste Biomass Valor, vol. 10, no. 6, pp. 1655–1667, 2019, doi: https://doi.org/10.1007/s12649-017-0164-y
- J. Gutiérrez, E. L. Chica, J. F. Pérez, “Parametric Analysis of a Gasification-Based Cookstove as a Function of Biomass Density, Gasification Behavior, Airflow Ratio, and Design,” ACS Omega, vol. 7, no. 9, pp. 7481–7498, 2022, doi: https://doi.org/10.1021/acsomega.1c05137
- T. H. E. United and S. Of, Industrial Ventilation: A Manual of Recommended Practice for Design, 23rd ed., vol. 552, no. 1. Cincinnati, Ohio: American Conference of Governmental Industrial Hygienists, 1997.
- T. de P. Protásio, “Brazilian Lignocellulosic Wastes for Bioenergy Production: Characterization and Comparison with Fossil Fuels,” vol. 8, no. 1, pp. 1166–1185, 2013.
- H. E. Díez, J. F. Pérez, “Physicochemical Characterization of Representative Firewood Species Used for Cooking in Some Colombian Regions,” International Journal of Chemical Engineering, vol. 2017, pp. 1–13, 2017, doi: https://doi.org/10.1155/2017/4531686
- Y. A. Lenis and J. F. Perez, “Estudio del Proceso de Gasificacion de Biomasa en Lecho Fijo Equicorriente,” Universidad de Antioquia, 2013.
- J. Porteiro, D. Patiño, J. Collazo, E. Granada, J. Moran, J. L. Miguez, “Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor,” Fuel, vol. 89, no. 1, pp. 26–35, 2010, doi: https://doi.org/10.1016/j.fuel.2009.01.024
- M. Horttanainen, J. Saastamoinen, P. Sarkomaa, “Operational Limits of Ignition Front Propagation against Airflow in Packed Beds of Different Wood Fuels,” Energy & Fuels, vol. 16, pp. 676–686, 2002.
- E. Díez, I. Gómez, J. Pérez, “Mass, energy, and exergy analysis of the microgasification process in a top-lit updraft reactor: effects of firewood type and forced primary airflow,” Sustainable Energy Technologies and Assessments, vol. 29, pp. 82–91, 2018, doi: https://doi.org/10.1016/j.seta.2018.07.003
- S. Varunkumar, “Packed bed gasification-combustion in biomass based domestic stoves and combustion systems,” tesis doctoral, Indian Institute of Science, 2014.
- F. Klauser et al., “Emission characterization of modern wood stoves under real-life oriented operating conditions,” Atmospheric Environment, vol. 192, no. April 2018, pp. 257–266, 2018, doi: https://doi.org/10.1016/j.atmosenv.2018.08.024
- J. Mandel, “Repeatability and Reproducibility,” Journal of Quality Technology, vol. 4, no. 2, pp. 74–85, 1999, doi: https://doi.org/10.1080/00224065.1972.11980520
- D. C. Montgomery, Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP®, Second edi., vol. 46, no. 2. Arizona: LIMUSA, S.A, 2014. doi: https://doi.org/10.1080/00224065.2014.11917962