Vol. 22 No. 3 (2023): Revista UIS Ingenierías
Articles

Analysis of variance and variation coefficient as repeatability criteria of a cookstove based on pellets gasification

Jonatan Gutiérrez
Universidad de Antioquia
Edwin Chica
Universidad de Antioquia
Juan F. Pérez
Universidad de Antioquia

Published 2023-07-28

Keywords

  • improved biomass cookstoves,
  • wood pellets,
  • statistical repeatability,
  • water boiling test protocol,
  • variation coefficient,
  • analysis of variance
  • ...More
    Less

How to Cite

Gutiérrez, J. ., Chica, E., & Pérez , J. F. . (2023). Analysis of variance and variation coefficient as repeatability criteria of a cookstove based on pellets gasification. Revista UIS Ingenierías, 22(3), 115–134. https://doi.org/10.18273/revuin.v22n3-2023009

Abstract

In this work is presented a repeatability study applied to a cookstove based on wood pellets gasification (19.03 MJ/kg). The analysis is carried out under a modified water boiling test (WBT 4.2.3). The repeatability of the gasification-based cookstove was assessed by means of two methodologies, such as the variation coefficient (CV, %) and the analysis of variance (ANOVA). The answer variables evaluated under repeatability were the efficiency ( , %), power (P, kW), fuel consumption (FC, g/min), fuel specific consumption (SFC, g/L), energy specific consumption (SFEC, kJ/L), and energy specific consumption per unit time (SFCT, kJ/L-min). By the CV analysis, the global average CV was 4.69% ± 0.87%. Therefore, as CV ≤ 5%, it is concluded that the gasification based cookstove is statistically repeatable. Concerning the ANOVA, the P-values of the variables studied were higher than 0.05 (P>0.05), thereby, it is stated that the improved cookstove is repeatable with a confidence level of 95%. Consequently, it is highlighted that the average thermal efficiency reached by the cookstove is ~29% ± 2.25%, with a confidence level of 95%. This thermal efficiency value is comparable with other biomass cookstoves based on gasification reported in the literature with values between 16 and 38%. The methodology and the results of this work constitute a theoretical foundation for assessing future developments of biomass cookstoves since the results reliability found in the prototypes tested at the laboratory level can be quantified and analyzed.

Downloads

Download data is not yet available.

References

  1. Ministerio de Minas y Energías, “Programa De Uso Racional Y Eficiente De Energía Y Fuentes No Convencionales – PROURE. República de Colombia.”
  2. “Ministerio de Minas y Energía, Unidad de Planeación Minero-Energética. Plan Energético Nacional 2020-2050. La transformación energética que habilita el desarrollo sostenible. 2020.,” Bogotá Colombia, 2020.
  3. Banco Mundial, “Área de tierra (kilómetros cuadrados) - Colombia.” [En línea]. Disponible en: https://datos.bancomundial.org/indicator/AG.LND.TOTL.K2?locations=CO
  4. E. Sánchez-Triana, K. Ahmed, A. Yewande, Prioridades ambientales para la reducción de la pobreza en Colombia: Un análisis ambiental del país para Colombia. Banco Mundial, 2007.
  5. Ministerio de Ambiente y Desarrollo Sostenible, “Lineamientos para un programa nacional de estufas eficientes para cocción con leña. República de Colombia,” 2015.
  6. Global Alliance for Clean Cookstoves, “The Water Boiling Test,” vol. 2, no. January 2013, 2014.
  7. S. F. Household Energy and Health Programme, “Controlled Cooking Test ( CCT ),” no. August, pp. 1–8, 2004.
  8. M. DeFoort, C. L’Orange, C. Kreutzer, N. Lorenz, W. Kamping, J. Alders, “Stove Manufacturers Emissions & Performance Test Protocol (EPTP),” Colorado State University, p. 30, 2009.
  9. Quality and Technical Supervision Bureau of Beijing Municipality, “General specifications for biomass household stoves - China,” 2008.
  10. Y. A. Lenis, A. F. Agudelo, J. F. Pérez, “Analysis of statistical repeatability of a fixed bed downdraft biomass gasification facility,” Applied Thermal Engineering, vol. 51, no. 1–2, pp. 1006–1016, 2013, doi: https://doi.org/10.1016/j.applthermaleng.2012.09.046
  11. H. Gutierrez, Control estadístico de la calidad y Seis Sigma, 3re ed. Mcgrawhill, 2013.
  12. Y. Wang, M. D. Sohn, A. J. Gadgil, Y. Want, K. M. Lask, and T. W. Kirchstetter, “How many replicate tests do I need? - Variability of cookstove performance and emissions has implications for obtaining useful results,” Lawrence Berkeley national Laboratory, no. 500, 2013.
  13. C. L’Orange, D. Leith, J. Volckens, M. DeFoort, “A quantitative model of cookstove variability and field performance: Implications for sample size,” Biomass and Bioenergy, vol. 72, pp. 233–241, 2015, doi: https://doi.org/10.1016/j.biombioe.2014.10.031
  14. T. Makonese, “Heterogeneous stove testing methods for the evaluation of domestic solid-fuel cookstoves,” International Energy Journal, vol. 18, no. 2, pp. 191–205, 2018.
  15. Clean Cooking Alliance, “Stove and Fuel Testing - FAQ.”
  16. F. Fachinger, F. Drewnick, R. Gieré, S. Borrmann, “How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions,” Atmospheric Environment, vol. 158, pp. 216–226, 2017, doi: https://doi.org/10.1016/j.atmosenv.2017.03.027
  17. G. Coulson, R. Bian, E. Somervell, “An investigation of the variability of particulate emissions from woodstoves in New Zealand,” Aerosol and Air Quality Research, vol. 15, no. 6, pp. 2346–2356, 2015, doi: https://doi.org/10.4209/aaqr.2015.02.0111
  18. ASTM-E691, “Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method”.
  19. R. Trojanowski, T. Butcher, G. Wei, Y. Celebi, “Repeatability in Particulate and Gaseous Emissions from Pellet Stoves for Space Heating,” Energy and Fuels, vol. 32, no. 3, pp. 3543–3550, 2018, doi: https://doi.org/10.1021/acs.energyfuels.7b03977
  20. C. Keily De La Hoz, J. F. Pérez, E. L. C. Arrieta, “Design of a top-lit up-draft micro-gasifier biomass cookstove by thermodynamic analysis and fluent modeling,” International Journal of Renewable Energy Research, vol. 7, no. 4, pp. 2172–2187, 2017, doi: https://doi.org/10.20508/ijrer.v7i4.6268.g7265
  21. E. Llamosa, Marcela. Botero, “Promedios y rangos para el aseguramiento de la calidad de los resultados de calibración de acuerdo con la norma técnica NTC- ISO/IEC 17025,” Scientia et Technica, no. 35, pp. 455–460, 2007, doi: https://doi.org/10.22517/23447214.5479
  22. J. F. Pérez, M. R. Pelaez-Samaniego, M. Garcia-Perez, “Torrefaction of Fast-Growing Colombian Wood Species,” Waste Biomass Valor, vol. 10, no. 6, pp. 1655–1667, 2019, doi: https://doi.org/10.1007/s12649-017-0164-y
  23. J. Gutiérrez, E. L. Chica, J. F. Pérez, “Parametric Analysis of a Gasification-Based Cookstove as a Function of Biomass Density, Gasification Behavior, Airflow Ratio, and Design,” ACS Omega, vol. 7, no. 9, pp. 7481–7498, 2022, doi: https://doi.org/10.1021/acsomega.1c05137
  24. T. H. E. United and S. Of, Industrial Ventilation: A Manual of Recommended Practice for Design, 23rd ed., vol. 552, no. 1. Cincinnati, Ohio: American Conference of Governmental Industrial Hygienists, 1997.
  25. T. de P. Protásio, “Brazilian Lignocellulosic Wastes for Bioenergy Production: Characterization and Comparison with Fossil Fuels,” vol. 8, no. 1, pp. 1166–1185, 2013.
  26. H. E. Díez, J. F. Pérez, “Physicochemical Characterization of Representative Firewood Species Used for Cooking in Some Colombian Regions,” International Journal of Chemical Engineering, vol. 2017, pp. 1–13, 2017, doi: https://doi.org/10.1155/2017/4531686
  27. Y. A. Lenis and J. F. Perez, “Estudio del Proceso de Gasificacion de Biomasa en Lecho Fijo Equicorriente,” Universidad de Antioquia, 2013.
  28. J. Porteiro, D. Patiño, J. Collazo, E. Granada, J. Moran, J. L. Miguez, “Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor,” Fuel, vol. 89, no. 1, pp. 26–35, 2010, doi: https://doi.org/10.1016/j.fuel.2009.01.024
  29. M. Horttanainen, J. Saastamoinen, P. Sarkomaa, “Operational Limits of Ignition Front Propagation against Airflow in Packed Beds of Different Wood Fuels,” Energy & Fuels, vol. 16, pp. 676–686, 2002.
  30. E. Díez, I. Gómez, J. Pérez, “Mass, energy, and exergy analysis of the microgasification process in a top-lit updraft reactor: effects of firewood type and forced primary airflow,” Sustainable Energy Technologies and Assessments, vol. 29, pp. 82–91, 2018, doi: https://doi.org/10.1016/j.seta.2018.07.003
  31. S. Varunkumar, “Packed bed gasification-combustion in biomass based domestic stoves and combustion systems,” tesis doctoral, Indian Institute of Science, 2014.
  32. F. Klauser et al., “Emission characterization of modern wood stoves under real-life oriented operating conditions,” Atmospheric Environment, vol. 192, no. April 2018, pp. 257–266, 2018, doi: https://doi.org/10.1016/j.atmosenv.2018.08.024
  33. J. Mandel, “Repeatability and Reproducibility,” Journal of Quality Technology, vol. 4, no. 2, pp. 74–85, 1999, doi: https://doi.org/10.1080/00224065.1972.11980520
  34. D. C. Montgomery, Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP®, Second edi., vol. 46, no. 2. Arizona: LIMUSA, S.A, 2014. doi: https://doi.org/10.1080/00224065.2014.11917962