Vol. 22 Núm. 2 (2023): Revista UIS Ingenierías
Artículos

Exoesqueletos industriales: siete principios para su implementación desde la perspectiva de la ergonomía

Yaniel Torres-Medina
École de technologie supérieure
Yordán Rodríguez
Universidad de Antioquia

Publicado 2023-04-07

Palabras clave

  • aceptabilidad,
  • confort,
  • costo-beneficio,
  • desórdenes musculoesqueléticos,
  • ergonomía,
  • exoesqueletos industriales,
  • salud laboral,
  • seguridad,
  • trabajo,
  • usabilidad,
  • utilidad
  • ...Más
    Menos

Cómo citar

Torres-Medina, Y., & Rodríguez , Y. . (2023). Exoesqueletos industriales: siete principios para su implementación desde la perspectiva de la ergonomía . Revista UIS Ingenierías, 22(2), 73–84. https://doi.org/10.18273/revuin.v22n2-2023007

Resumen

En los últimos años ha crecido el interés por el uso de exoesqueletos industriales como estrategia de prevención de desórdenes musculoesqueléticos de origen laboral. Sin embargo, existe aún incertidumbre sobre las posibles ventajas y desventajas de la adopción de esta relativamente nueva tecnología. El objetivo de este artículo es llevar a cabo un análisis crítico sobre el uso de los exoesqueletos industriales como estrategia de prevención de desórdenes musculoesqueléticos y proponer siete principios para guiar su implementación en contextos de trabajo desde la perspectiva de la ergonomía. Si bien el potencial de los exoesqueletos es prometedor, el estado actual de conocimientos es insuficiente como para hacer un uso de ellos en la prevención de desórdenes musculoesqueléticos sin considerar algunos cuestionamientos. Se recomienda que un profesional competente en ergonomía acompañe cualquier intervención encaminada a implementar exoesqueletos industriales, con el objetivo de incrementar las posibilidades de éxito y atenuar efectos negativos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. P. Egaña del Sol, C. Joyce, “The future of work in developing economies”, MIT Sloan Management Review, 2020.
  2. L. Nedelkoska, G. Quintini, “Automation, skills use and training”, OECD Social, Employment and Migration Working Papers, núm. 202, OECD Publishing, París, 2018. doi: https://doi.org/10.1787/1815199X
  3. D. Romero, T. Wuest, J. Stahre, D. Gorecky, “Social factory architecture: Social networking services and production scenarios through the social internet of things, services and people for the social operator 4.0”, en H. Lödding, R. Riedel, K. D. Thoben, G. von Cieminski, D. Kiritsis (eds.), Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing, APMS 2017. IFIP Advances in Information and Communication Technology, vol. 513. Cham, Switzerland: Springer International Publishing, 2017, doi: https://doi.org/10.1007/978-3-319-66923-6_31
  4. D. Colombini, E. Occhipinti, N. Delleman, N. Fallentin, A. Kilbom, A. Grieco, Technical Committee on Musculoskeletal Disorders of International Ergonomics Association, “Exposure assessment of upper limb repetitive movements: A consensus document developed by the Technical Committee on Musculoskeletal Disorders of International Ergonomics Association (IEA) endorsed by International Commission on Occupational Health (ICOH)”, G Ital Med Lav Ergon, vol. 23, no. 2, pp. 129-142, 2001.
  5. K. G. Davis, W. S. Marras, “Partitioning the contributing role of biomechanical, psychosocial, and individual risk factors in the development of spine loads”, Spine J, vol. 3, no. 5, pp. 331-338, 2003. doi: https://doi.org/10.1016/S1529-9430(03)00082-2
  6. International Labour Organization, “Global trends on occupational accidents and diseases”, World Day for Safety and Health at Work, 28 April, 2015.
  7. Eurofound, “6th European Working Conditions Survey – Overview report (2017 update)”, Luxembourg: Publications Office of the European Union, 2017.
  8. Bureau of Labor Statistics, U.S Department of Labor, “Nonfatal occupational injuries and illnesses requiring days away from work, 2015”, 2016.
  9. M. A. Nussbaum, B. D. Lowe, M. de Looze, C. Harris-Adamson, M. Smets, “An introduction to the special issue on occupational exoskeletons”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 153-162, 2019, doi: https://doi.org/10.1080/24725838.2019.1709695
  10. H. P. Crowell, J.-H. Park, C. A. Haynes, J. M. Neugebauer, A. C. Boynton, “Design, evaluation, and research challenges relevant to exoskeletons and exosuits: A 26-year perspective from the U.S. Army Research Laboratory”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 199-212, 2019, doi: https://doi.org/10.1080/24725838.2018.1563571
  11. K. G. Davis, C. R. Reid, D. D. Rempel, D. Treaster, “Introduction to the Human Factors Special Issue on User-Centered Design for Exoskeleton”, Human Factors, vol. 62, no. 3, pp. 333-336, 2020, doi: https://doi.org/10.1177/0018720820914312
  12. Real Academia Española (RAE), “Dermatoesqueleto”, Diccionario de la lengua española, 2021. [En línea]. Disponible en: https://dle.rae.es/dermatoesqueleto#Iccjw8c
  13. Merriam-Webster, “Exoskeleton”, Merriam-Webster.com Dictionary, 2022. https://www.merriam-webster.com/dictionary/exoskeleton
  14. J. Theurel, K. Desbrosses, “Usage d’un exosquelette d’assistance des bras : bénéfices et contraintes lors de tâches de manutention”, Hygiène et sécurité du travail, no. 251, pp. 62-68, 2018.
  15. B. D. Lowe, W. G. Billotte, D. R. Peterson, “ASTM F48 formation and standards for industrial exoskeletons and exosuits”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 230-236, 2019, doi: https://doi.org/10.1080/24725838.2019.1579769
  16. American Society for Testing and Materials (ASTM). ASTM F3323-20 Standard Terminology for Exoskeletons and Exosuits. West Conshohocken, PA, 2020.
  17. Exoskeleton Report. “Exoskeleton Catalog / Industrial”, 2022. [En línea]. Disponible en: https://exoskeletonreport.com/product-category/exoskeleton-catalog/industrial/
  18. American Society for Testing and Materials (ASTM), Center of Excellence, ASTM International Exo Technology. Center of Ecellence. Pursuing Safe & Reliable Exo Technologies for Humanity, 2020. [En línea]. Disponible en: https://www.etcoe.org/
  19. American Society for Testing and Materials (ASTM), ASTM F3474-20 Standard Practice for Establishing Exoskeleton Functional Ergonomic Parameters and Test Metrics. West Conshohocken, PA, 2021.
  20. Exoskeleton Report, “Laevo FLEX 3.0 is the first-ever exoskeleton issued personal protective equipment PPE CE Mark”, 2022. [En línea]. Disponible en: https://exoskeletonreport.com/2022/04/laevo-flex-3-0-is-the-first-ever-exoskeleton-issued-personal-protective-equipment-ppe-ce-mark
  21. European Commission, “Internal Market, Industry, Entrepreneurship and SMEs. CE marking”, 2021. [En línea]. Disponible en: https://ec.europa.eu/growth/single-market/ce-marking_en
  22. A. de Vries, M. Murphy, R. Könemann, I. Kingma, M. de Looze, “The amount of support provided by a passive arm support exoskeleton in a range of elevated arm postures”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 311-321, 2019, doi: https://doi.org/10.1080/24725838.2019.1669736
  23. M. Marino, “Impacts of using passive back assist and shoulder assist exoskeletons in a wholesale and retail trade sector environment”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 281-290, 2019, doi: https://doi.org/10.1080/24725838.2019.1645057
  24. J. Theurel, K. Desbrosses, T. Roux, A. Savescu, “Physiological consequences of using an upper limb exoskeleton during manual handling tasks”, Applied Ergonomics, vol. 67, pp. 211-217, 2018, doi: https://doi.org/10.1016/j.apergo.2017.10.008
  25. R. Hensel M. Keil, “Subjective evaluation of a passive industrial exoskeleton for lower-back support: A field study in the automotive sector”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 213-221, 2019, doi: https://doi.org/10.1080/24725838.2019.1573770
  26. M. Smets, “A field evaluation of arm-support exoskeletons for overhead work applications in automotive assembly”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 192-198, 2019, doi: https://doi.org/10.1080/24725838.2018.1563010
  27. T. Turja, R. Saurio, J. Katila, L. Hennala, S. Pekkarinen, H. Melkas, “Intention to use exoskeletons in geriatric care work: Need for ergonomic and social design”, Ergonomics in Design: The Quarterly of Human Factors Applications, vol. 30, no. 2, pp. 13-16, 2020, doi: https://doi.org/10.1177/1064804620961577
  28. J.-H. Park, S. Kim, M. A. Nussbaum, D. Srinivasan, “Effects of back-support exoskeleton use on gait performance and stability during level walking”, Gait & Posture, vol. 92, pp. 181-190, 2022, doi: https://doi.org/10.1016/j.gaitpost.2021.11.028
  29. S. Kim, M. A. Nussbaum, M. Smets, “Usability, user acceptance, and health outcomes of arm-support exoskeleton use in automotive assembly: An 18-month field study”, J Occup Environ Med, vol. 64, no. 3, pp. 202-211, 2022, doi: https://doi.org/10.1097/JOM.0000000000002438
  30. M. Bär, B. Steinhilber, M. A. Rieger, T. Luger, “The influence of using exoskeletons during occupational tasks on acute physical stress and strain compared to no exoskeleton – A systematic review and meta-analysis”, Applied Ergonomics, vol. 94, 103385, 2021, doi: https://doi.org/10.1016/j.apergo.2021.103385
  31. National Institute for Occupational Safety and Health (NIOSH), “Hierarchy of controls”, 2015. [En línea]. Disponible en: https://www.cdc.gov/niosh/topics/hierarchy/default.html
  32. Real Academia Española (RAE), “Útil”. Diccionario de la lengua española, 2021. [En línea]. Disponible en: https://dle.rae.es/utilidad
  33. L. Wioland, L. Debay, J. J. Atain-Kouadio, “Acceptation des exosquelettes par les opérateurs : étude exploratoire”, Références en santé au travail, no. 157, pp. 45-61, 2019.
  34. F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology”, MIS Quarterly, vol. 13, no. 3, pp. 319-340, 1989, doi: https://doi.org/10.2307/249008
  35. M. Hassenzahl, “The interplay of beauty, goodness, and usability in interactive products”, Human-Computer Interaction, vol. 19, no. 4, pp. 319-349, 2004, doi: https://doi.org/10.1207/s15327051hci1904_2
  36. Gorodenkoff, Black African American Engineer and Exoskeleton Human, [En línea]. Disponible en: https://www.shutterstock.com/g/gorodenkoff