Seven principles for implementing industrial exoskeletons using the ergonomic approach
Published 2023-04-07
Keywords
- acceptability,
- comfort,
- cost-benefit,
- musculoskeletal disorders,
- ergonomics
- industrial exoskeletons,
- occupational health,
- safety,
- work,
- usability,
- utility ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In recent years, there has been growing interest in using industrial exoskeletons as a strategy for the prevention of work-related musculoskeletal disorders. However, there is still uncertainty about the potential advantages and disadvantages of adopting this relatively new technology. The objective of this article is to conduct a critical analysis of the use of industrial exoskeletons as a strategy for the prevention of these disorders and to propose seven principles to guide their implementation in work contexts from an ergonomics perspective. Although the potential of exoskeletons is promising, the current state of knowledge needs to be improved to use them in preventing musculoskeletal disorders without considering some questions. It is recommended that a professional ergonomist should accompany any intervention aimed at implementing industrial exoskeletons to increase the chances of success and mitigate negative effects
Downloads
References
- P. Egaña del Sol, C. Joyce, “The future of work in developing economies”, MIT Sloan Management Review, 2020.
- L. Nedelkoska, G. Quintini, “Automation, skills use and training”, OECD Social, Employment and Migration Working Papers, núm. 202, OECD Publishing, París, 2018. doi: https://doi.org/10.1787/1815199X
- D. Romero, T. Wuest, J. Stahre, D. Gorecky, “Social factory architecture: Social networking services and production scenarios through the social internet of things, services and people for the social operator 4.0”, en H. Lödding, R. Riedel, K. D. Thoben, G. von Cieminski, D. Kiritsis (eds.), Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing, APMS 2017. IFIP Advances in Information and Communication Technology, vol. 513. Cham, Switzerland: Springer International Publishing, 2017, doi: https://doi.org/10.1007/978-3-319-66923-6_31
- D. Colombini, E. Occhipinti, N. Delleman, N. Fallentin, A. Kilbom, A. Grieco, Technical Committee on Musculoskeletal Disorders of International Ergonomics Association, “Exposure assessment of upper limb repetitive movements: A consensus document developed by the Technical Committee on Musculoskeletal Disorders of International Ergonomics Association (IEA) endorsed by International Commission on Occupational Health (ICOH)”, G Ital Med Lav Ergon, vol. 23, no. 2, pp. 129-142, 2001.
- K. G. Davis, W. S. Marras, “Partitioning the contributing role of biomechanical, psychosocial, and individual risk factors in the development of spine loads”, Spine J, vol. 3, no. 5, pp. 331-338, 2003. doi: https://doi.org/10.1016/S1529-9430(03)00082-2
- International Labour Organization, “Global trends on occupational accidents and diseases”, World Day for Safety and Health at Work, 28 April, 2015.
- Eurofound, “6th European Working Conditions Survey – Overview report (2017 update)”, Luxembourg: Publications Office of the European Union, 2017.
- Bureau of Labor Statistics, U.S Department of Labor, “Nonfatal occupational injuries and illnesses requiring days away from work, 2015”, 2016.
- M. A. Nussbaum, B. D. Lowe, M. de Looze, C. Harris-Adamson, M. Smets, “An introduction to the special issue on occupational exoskeletons”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 153-162, 2019, doi: https://doi.org/10.1080/24725838.2019.1709695
- H. P. Crowell, J.-H. Park, C. A. Haynes, J. M. Neugebauer, A. C. Boynton, “Design, evaluation, and research challenges relevant to exoskeletons and exosuits: A 26-year perspective from the U.S. Army Research Laboratory”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 199-212, 2019, doi: https://doi.org/10.1080/24725838.2018.1563571
- K. G. Davis, C. R. Reid, D. D. Rempel, D. Treaster, “Introduction to the Human Factors Special Issue on User-Centered Design for Exoskeleton”, Human Factors, vol. 62, no. 3, pp. 333-336, 2020, doi: https://doi.org/10.1177/0018720820914312
- Real Academia Española (RAE), “Dermatoesqueleto”, Diccionario de la lengua española, 2021. [En línea]. Disponible en: https://dle.rae.es/dermatoesqueleto#Iccjw8c
- Merriam-Webster, “Exoskeleton”, Merriam-Webster.com Dictionary, 2022. https://www.merriam-webster.com/dictionary/exoskeleton
- J. Theurel, K. Desbrosses, “Usage d’un exosquelette d’assistance des bras : bénéfices et contraintes lors de tâches de manutention”, Hygiène et sécurité du travail, no. 251, pp. 62-68, 2018.
- B. D. Lowe, W. G. Billotte, D. R. Peterson, “ASTM F48 formation and standards for industrial exoskeletons and exosuits”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 230-236, 2019, doi: https://doi.org/10.1080/24725838.2019.1579769
- American Society for Testing and Materials (ASTM). ASTM F3323-20 Standard Terminology for Exoskeletons and Exosuits. West Conshohocken, PA, 2020.
- Exoskeleton Report. “Exoskeleton Catalog / Industrial”, 2022. [En línea]. Disponible en: https://exoskeletonreport.com/product-category/exoskeleton-catalog/industrial/
- American Society for Testing and Materials (ASTM), Center of Excellence, ASTM International Exo Technology. Center of Ecellence. Pursuing Safe & Reliable Exo Technologies for Humanity, 2020. [En línea]. Disponible en: https://www.etcoe.org/
- American Society for Testing and Materials (ASTM), ASTM F3474-20 Standard Practice for Establishing Exoskeleton Functional Ergonomic Parameters and Test Metrics. West Conshohocken, PA, 2021.
- Exoskeleton Report, “Laevo FLEX 3.0 is the first-ever exoskeleton issued personal protective equipment PPE CE Mark”, 2022. [En línea]. Disponible en: https://exoskeletonreport.com/2022/04/laevo-flex-3-0-is-the-first-ever-exoskeleton-issued-personal-protective-equipment-ppe-ce-mark
- European Commission, “Internal Market, Industry, Entrepreneurship and SMEs. CE marking”, 2021. [En línea]. Disponible en: https://ec.europa.eu/growth/single-market/ce-marking_en
- A. de Vries, M. Murphy, R. Könemann, I. Kingma, M. de Looze, “The amount of support provided by a passive arm support exoskeleton in a range of elevated arm postures”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 311-321, 2019, doi: https://doi.org/10.1080/24725838.2019.1669736
- M. Marino, “Impacts of using passive back assist and shoulder assist exoskeletons in a wholesale and retail trade sector environment”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 281-290, 2019, doi: https://doi.org/10.1080/24725838.2019.1645057
- J. Theurel, K. Desbrosses, T. Roux, A. Savescu, “Physiological consequences of using an upper limb exoskeleton during manual handling tasks”, Applied Ergonomics, vol. 67, pp. 211-217, 2018, doi: https://doi.org/10.1016/j.apergo.2017.10.008
- R. Hensel M. Keil, “Subjective evaluation of a passive industrial exoskeleton for lower-back support: A field study in the automotive sector”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 213-221, 2019, doi: https://doi.org/10.1080/24725838.2019.1573770
- M. Smets, “A field evaluation of arm-support exoskeletons for overhead work applications in automotive assembly”, IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, nos. 3-4, pp. 192-198, 2019, doi: https://doi.org/10.1080/24725838.2018.1563010
- T. Turja, R. Saurio, J. Katila, L. Hennala, S. Pekkarinen, H. Melkas, “Intention to use exoskeletons in geriatric care work: Need for ergonomic and social design”, Ergonomics in Design: The Quarterly of Human Factors Applications, vol. 30, no. 2, pp. 13-16, 2020, doi: https://doi.org/10.1177/1064804620961577
- J.-H. Park, S. Kim, M. A. Nussbaum, D. Srinivasan, “Effects of back-support exoskeleton use on gait performance and stability during level walking”, Gait & Posture, vol. 92, pp. 181-190, 2022, doi: https://doi.org/10.1016/j.gaitpost.2021.11.028
- S. Kim, M. A. Nussbaum, M. Smets, “Usability, user acceptance, and health outcomes of arm-support exoskeleton use in automotive assembly: An 18-month field study”, J Occup Environ Med, vol. 64, no. 3, pp. 202-211, 2022, doi: https://doi.org/10.1097/JOM.0000000000002438
- M. Bär, B. Steinhilber, M. A. Rieger, T. Luger, “The influence of using exoskeletons during occupational tasks on acute physical stress and strain compared to no exoskeleton – A systematic review and meta-analysis”, Applied Ergonomics, vol. 94, 103385, 2021, doi: https://doi.org/10.1016/j.apergo.2021.103385
- National Institute for Occupational Safety and Health (NIOSH), “Hierarchy of controls”, 2015. [En línea]. Disponible en: https://www.cdc.gov/niosh/topics/hierarchy/default.html
- Real Academia Española (RAE), “Útil”. Diccionario de la lengua española, 2021. [En línea]. Disponible en: https://dle.rae.es/utilidad
- L. Wioland, L. Debay, J. J. Atain-Kouadio, “Acceptation des exosquelettes par les opérateurs : étude exploratoire”, Références en santé au travail, no. 157, pp. 45-61, 2019.
- F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology”, MIS Quarterly, vol. 13, no. 3, pp. 319-340, 1989, doi: https://doi.org/10.2307/249008
- M. Hassenzahl, “The interplay of beauty, goodness, and usability in interactive products”, Human-Computer Interaction, vol. 19, no. 4, pp. 319-349, 2004, doi: https://doi.org/10.1207/s15327051hci1904_2
- Gorodenkoff, Black African American Engineer and Exoskeleton Human, [En línea]. Disponible en: https://www.shutterstock.com/g/gorodenkoff