Published 2024-04-15
Keywords
- Shot peening,
- Vickers microhardness,
- residual stress,
- SAE 5160,
- leaf springs
How to Cite
Copyright (c) 2024 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Shot peening (SP) is a surface cold hardening process used on metals to enhance life under cyclic stress. In this case, SP was applied to SAE5160H samples of steel quenched tempered in oil at 460 °C used for leaf springs. This study shows the residual surface stresses measured through X-ray diffraction (XRD) and the microhardness variation through the perpendicular-to-the-peened surface using a combination of metallographic preparation and Vickers microhardness (HVN). This combination of techniques makes possible measuring the SP effect in perpendicular-to-the-treated surface. A residual stress of -365.8 ± 78 MPa measured by XRD and a maximum microhardness of 525± at 92.7 HVN on the surface were obtained for the SP material. Alternatively, an average of 54.2 ± 54.3 MPa residual stress measured by XRD and 433 ± 39.5 HVN were obtained for the As-it-is samples. In addition, corrosion electrochemical potential tests showed that SP increases the corrosion potential, which makes this process undesirable if the SP component is exposed to aggressive environments. Moreover, the As-it-is samples presented not statistically significant HVN difference in the measured points. The combination of experimental techniques allows estimating hardness change in perpendicular-to-the treated surface separated by as little as 10 µm but with a simpler specimen preparation than other techniques such as XRD or strain gauges. Such a combination can be an alternative for estimating residual stresses through depth.
Downloads
References
- J. T. P. Castro and M. Meggiolaro, Fatigue Design Techniques, Vol I, 3rd ed. Scotts Valley, CA, USA: CreateSpace, 2016.
- D. Kirk, “Quantification of shot peening coverage,” The Shot Peener, Mishawaka, pp. 22–34, Jan. 2014.
- H. Hernández, A. Viloria, Y. Arango, A. Jiménez, H. Mendoza, J. Cadena, “Mejoramiento del proceso de granallado para resortes de ballesta utilizando medición de esfuerzos residuales por difracción de rayos X,” Revista Ingeniería e Investigación, no. 56, pp. 33–40, 2004.
- H. E. Jaramillo, N. A. de Sánchez, J. A. Ávila, “Effect of the shot peening process on the fatigue strength of SAE 5160 steel,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 233, no. 12, pp. 4328–4335, 2019, doi: https://doi.org/10.1177/0954406218816349
- SAE, “SAE J443. Procedures for Using Standard Shot Peening Test Strip,” SAE International, 2018. doi: https://doi.org/10.4271/J443_198401
- ASTM, “ASTM E 2860. Standard Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels,” 2012.
- A. Mičietová, M. Čilliková, R. Čep, B. Mičieta, J. Uríček, M. Neslušan, “An Investigation of Residual Stresses after the Turning of High-Tempered Bearing Steel,” Machines, vol. 12, no. 2, p. 139, 2024, doi: https://doi.org/10.3390/machines12020139
- L. D. Rodrigues, J. L. F. Freire, R. D. Viera, “Desenvolvimento e avaliação experimental de uma nova técnica para medição de tensões residuais,” Revista Matéria UFRJ, vol. 16, no. 4, pp. 842–856, 2011.
- C. Inglis, “Stresses in Plates Due to the Presence of Cracks and Sharp Corners,” Transactions of the Institute of Naval Architects, vol. 55, pp. 219–241, 1913.
- J. Muñoz-Cubillos, J. J. Coronado, S. A. Rodríguez, “Deep rolling effect on fatigue behavior of austenitic stainless steels,” Int J Fatigue, vol. 95, pp. 120–131, Feb. 2017, doi: https://doi.org/10.1016/j.ijfatigue.2016.10.008
- B. Xia et al., “Improving the high-cycle fatigue life of a high-strength spring steel for automobiles by suitable shot peening and heat treatment,” Int J Fatigue, vol. 161, p. 106891, Aug. 2022, doi: https://doi.org/10.1016/j.ijfatigue.2022.106891
- Y. Li, P. Wei, X. Zhao, R. Zhu, J. Wu, H. Liu, “A novel approach of shot peening process parameters prediction with missing surface integrity data based on imputation method,” The International Journal of Advanced Manufacturing Technology, May 2023, doi: https://doi.org/10.1007/s00170-023-11514-x
- S. A. Ojo et al., “Improving fatigue life of additively repaired Ti-6Al-4V subjected to laser-assisted ultrasonic nanocrystal surface modification,” Int J Fatigue, vol. 173, p. 107663, 2023, doi: https://doi.org/10.1016/j.ijfatigue.2023.107663
- S. Aguado-Montero, J. Vázquez, C. Navarro, J. Domínguez, “Optimal shot peening residual stress profile for fatigue,” Theoretical and Applied Fracture Mechanics, vol. 116, p. 103109, 2021, doi: https://doi.org/10.1016/j.tafmec.2021.103109
- E. H. Judd, Spring Design Manual. Warrendale PA: SAE, 1996.
- D. Mantilla, N. Arzola, O. Araque, “Optimal design of leaf springs for vehicle suspensions under cyclic conditions,” Ingeniare. Revista chilena de ingeniería, vol. 30, no. 1, pp. 23–36, 2022, doi: https://doi.org/10.4067/S0718-33052022000100023
- M. Yetna N’Jock, D. Chicot, X. Decoopman, J. Lesage, J. M. Ndjaka, A. Pertuz, “Mechanical tensile properties by spherical macroindentation using an indentation strain-hardening exponent,” Int J Mech Sci, vol. 75, pp. 257–264, Oct. 2013, doi: https://doi.org/10.1016/j.ijmecsci.2013.07.008
- D. G. Agredo-Diaz et al., “Evaluation of the corrosion resistance of an additive manufacturing steel using electrochemical techniques,” Revista UIS Ingenierías, vol. 19, no. 4, pp. 213–222, 2020, doi: https://doi.org/10.18273/revuin.v19n4-2020018
- C. Lopez-Crespo, A. S. Cruces, S. Seitl, B. Moreno, P. Lopez-Crespo, “Estimation of the Plastic Zone in Fatigue via Micro-Indentation,” Materials, vol. 14, no. 19, p. 5885, Oct. 2021, doi: https://doi.org/10.3390/ma14195885
- A. D. Pertuz-Comas, O. A. González-Estrada, E. Martínez-Díaz, D. F. Villegas-Bermúdez, J. G. Díaz-Rodríguez, “Strain-Based Fatigue Experimental Study on Ti–6Al–4V Alloy Manufactured by Electron Beam Melting,” Journal of Manufacturing and Materials Processing, vol. 7, no. 1, p. 25, Jan. 2023, doi: https://doi.org/10.3390/jmmp7010025
- M. Vormwald, Y. Hos, J. L. F. Freire, G. L. G. Gonzáles, J. G. Díaz, “Variable mode-mixity during fatigue cycles – crack tip parameters determined from displacement fields measured by digital image correlation,” Frattura ed Integrità Strutturale, vol. 11, no. 41, pp. 314–322, Jun. 2017, doi: https://doi.org/10.3221/IGF-ESIS.41.42
- J. G. Díaz-Rodríguez, G. L. Gonzales, J. A. Ortiz Gonzalez, J. L. de F. Freire, “Analysis of Mixed-mode Stress Intensity Factors using Digital Image Correlation Displacement Fields,” in Proceedings of the 24th ABCM International Congress of Mechanical Engineering, ABCM, Ed., Curitiba: ABCM, 2017. doi: https://doi.org/10.26678/ABCM.COBEM2017.COB17-0684
- S. Vantadori, A. Zanichelli, “Fretting‐fatigue analysis of shot‐peened aluminium and titanium test specimens,” Fatigue Fract Eng Mater Struct, no. September, p. ffe.13367, Oct. 2020, doi: https://doi.org/10.1111/ffe.13367
- F. Romero, A. Pertuz, and J. G. Diaz, “Fatigue study on AISI/SAE 1015 steel with shot peening under corrosive environments,” J Phys Conf Ser, vol. 1938, no. 1, p. 012005, May 2021, doi: https://doi.org/10.1088/1742-6596/1938/1/012005
- SAE, “SAE J442. Test Strip, Holder, and Gage for Shot Peening,” 2013. doi: https://doi.org/10.4271/J442_201302
- J. G. Díaz-Rodríguez, “Comparison of stress separation procedures. experiments versus theoretical formulation,” Engineering Solid Mechanics, vol. 10, no. 2, pp. 153–164, 2022, doi: https://doi.org/10.5267/j.esm.2022.1.003
- ASTM, “ASTM E 837. Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” 2013.
- F. Valiorgue et al., “Influence of residual stress profile and surface microstructure on fatigue life of a 15-5PH,” Procedia Eng, vol. 213, pp. 623–629, 2018, doi: https://doi.org/10.1016/j.proeng.2018.02.058
- B. Reggiani, G. Olmi, “Experimental Investigation on the Effect of Shot Peening and Deep Rolling on the Fatigue Response of High Strength Fasteners,” Metals (Basel), vol. 9, no. 10, p. 1093, 2019, doi: https://doi.org/10.3390/met9101093