Vol. 23 No. 4 (2024): Revista UIS Ingenierías
Articles

Characterization of Chitosan Polyethylene glycol Hydroxyapatite composite coatings fabricated by dip coating

Anderson Sandoval-Amador
Universidad Loyola Andalucia
Ana María Nieto-Soto
Instituto Colombiano del Petróleo
Dolly Katherine Diaz-Maldonado
Cromanal S.A.S.
Hugo Armando Estupiñan-Duran
Universidad Nacional de Colombia
Dario Yesid Peña-Ballesteros
Universidad Industrial de Santander

Published 2024-11-29

Keywords

  • Ti6Al4V alloy,
  • surface modification,
  • alkaline treatment,
  • polymer-ceramic coatings,
  • bioactive coatings,
  • simulated body fluid,
  • calcium absorption,
  • apatite formation,
  • electrochemical behavior,
  • surface engineering,
  • bone regeneration
  • ...More
    Less

How to Cite

Sandoval-Amador, A., Nieto-Soto , A. M. ., Diaz-Maldonado, D. K., Estupiñan-Duran, H. A., & Peña-Ballesteros, D. Y. (2024). Characterization of Chitosan Polyethylene glycol Hydroxyapatite composite coatings fabricated by dip coating. Revista UIS Ingenierías, 23(4), 133–144. https://doi.org/10.18273/revuin.v23n4-2024011

Abstract

The development and characterization of bioactive surfaces based on chitosan-polyethylene glycol coatings modified with hydroxyapatite on Ti6Al4V alloy were conducted to enhance bioactivity. Characterization techniques such as scanning electron microscopy, X-ray diffraction, infrared spectroscopy, atomic absorption spectroscopy, and electrochemical impedance spectroscopy were used to evaluate coating properties, apatite formation after immersion in simulated body fluid, and electrochemical stability. Results demonstrated apatite deposition due to the bioactivity of the polymer-ceramic composite, with calcium accumulation observed on the substrate surface after 5 days of immersion. Electrochemical impedance spectroscopy revealed a highly capacitive layer in the 50:50 chitosan-polyethylene glycol coating with 0.05% w/v hydroxyapatite, indicating increased interaction with the biological medium while preserving the protective resistive properties of the Ti6Al4V alloy. These findings suggest that this coating composition is a promising material for bone tissue regeneration applications.

Downloads

Download data is not yet available.

References

  1. R. Agrawal, A. Kumar, M. K. A. Mohammed, S. Singh, “Biomaterial types, properties, medical applications, and other factors: a recent review”, J. Zhejiang Univ. Sci. A, vol. 24, n.o 11, pp. 1027-1042, nov. 2023, doi: https://doi.org/10.1631/jzus.A2200403
  2. A. E. Eldeeb, S. Salah, N. A. Elkasabgy, “Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review”, AAPS PharmSciTech, vol. 23, n.o 7, p. 267, sep. 2022, doi: https://doi.org/10.1208/s12249-022-02419-1
  3. M. M. Farag, “Recent trends on biomaterials for tissue regeneration applications: review”, J Mater Sci, vol. 58, n.o 2, pp. 527-558, 2023, doi: https://doi.org/10.1007/s10853-022-08102-x
  4. X. Hu, T. Wang, F. Li, X. Mao, “Surface modifications of biomaterials in different applied fields”, RSC Adv., vol. 13, n.o 30, pp. 20495-20511, 2023, doi: https://doi.org/10.1039/D3RA02248J
  5. A. B. Karakullukcu, E. Taban, O. O. Ojo, “Biocompatibility of biomaterials and test methods: a review”, Materials Testing, vol. 65, n.o 4, pp. 545-559, 2023, doi: https://doi.org/10.1515/mt-2022-0195
  6. Y. Özalp y N. Özdemir, “biomaterials and biocompatibility”, J. Fac. Pharm. Ankara, vol. 25, n.o 2, Art. n.o 2, 1996, doi: https://doi.org/10.1501/Eczfak_0000000307
  7. I. Milošev, “Metallic materials for biomedical applications: Laboratory and clinical studies”, Pure and Applied Chemistry, vol. 83, no. 2, pp. 309-324, 2010, doi: https://doi.org/10.1351/PAC-CON-10-07-09
  8. T. Singh, S. Singh, y G. Singh, “An Introduction to Bio-Implants and Biodegradable Materials: A Review”, en Additive Manufacturing of Polymers for Tissue Engineering, CRC Press, 2022.
  9. D. I. Tanikić, M. T. Manić, D. M. Đenadić, S. S. Ranđelović, J. R. Milovanović, y P. S. Đekić, “Metals and alloys in the function of biomaterials”, Vojnotehnički glasnik, vol. 60, n.o 2, pp. 202-215, 2012, doi: https://doi.org/10.5937/vojtehg1202202T
  10. H.-D. Jung, Ed., Titanium and Its Alloys for Biomedical Applications. MDPI – Multidisciplinary, 2022, doi: https://doi.org/10.3390/books978-3-0365-4936-1
  11. A. Mirzajavadkhan, S. Rafieian, y M. H. Hasan, “Toxicity of Metal Implants and Their Interactions with Stem Cells: A Review”, International Journal of Engineering Materials and Manufacture, vol. 5, no. 1, pp. 2-11, 2020, doi: https://doi.org/10.26776/ijemm.05.01.2020.02
  12. N. Contuzzi et al., “Metals Biotribology and Oral Microbiota Biocorrosion Mechanisms”, Journal of Functional Biomaterials, vol. 14, n.o 1, Art. n.o 1, 2023, doi: https://doi.org/10.3390/jfb14010014
  13. M. Niinomi, T. Hanawa, y T. Narushima, “Japanese research and development on metallic biomedical, dental, and healthcare materials”, JOM, vol. 57, n.o 4, pp. 18-24, 2005, doi: https://doi.org/10.1007/s11837-005-0076-3
  14. L. Zhang y Z. Chen, “[Bioactive materials in endodontics]”, Zhonghua Kou Qiang Yi Xue Za Zhi, vol. 57, n.o 1, pp. 31-37, ene. 2022, doi: https://doi.org/10.3760/cma.j.cn112144-20211001-00452
  15. A. M. Ferreira y P. Gentile, “Editorial: Biofunctional materials and coatings for orthopaedic and dental applications”, Front. Bioeng. Biotechnol., vol. 11, abr. 2023, doi: https://doi.org/10.3389/fbioe.2023.1203815
  16. L. S. G. Rodríguez, A. F. Q. Jaime, D. Y. P. Ballesteros, y H. A. E. Durán, “Obtención, caracterización y evaluación in vitro de recubrimientos de policaprolactona-quitosano sobre la aleación Ti6Al4V tratada químicamente”, Revista de Metalurgia, vol. 50, no. 3, 2014, doi: https://doi.org/10.3989/revmetalm.021
  17. K. A. Lopez-Jaime, D. Y. Peña-Ballesteros, A. Sandoval-Amador, “Characterization of titanium oxide nanotubes growth through anodization in organic solvents”, J. Phys.: Conf. Ser., vol. 1386, n.o 1, p. 012009, 2019, doi: https://doi.org/10.1088/1742-6596/1386/1/012009
  18. A. Sandoval-Amador, L. J. Miranda-Vesga, J. S. P. Martínez, D. Y. Peña-Ballesteros, S. J. García-Vergara, “Biofuncionalización de Ti6Al4V mediante crecimiento de nanoestructuras de TiO 2 con contenido de calcio y fósforo”, Matéria (Rio J.), vol. 21, pp. 606-614, sep. 2016, doi: https://doi.org/10.1590/S1517-707620160003.0058
  19. A. S. Amador, N. D. M. Supelano, A. M. V. Arias, P. E. Rivero, y D. Y. P. Ballesteros, “HOS cell adhesion on TiO2 nanotubes texturized by laser engraving”, J. Phys.: Conf. Ser., vol. 786, n.o 1, p. 012010, 2017, doi: https://doi.org/10.1088/1742-6596/786/1/012010
  20. N. D. Montañez-Supelano, A. Sandoval-Amador, H. A. Estupiñan-Durán, y D. Y. Peña-Ballesteros, “A novel biphasic calcium phosphate derived from fish otoliths”, J. Phys.: Conf. Ser., vol. 935, n.o 1, p. 012037, dic. 2017, doi: https://doi.org/10.1088/1742-6596/935/1/012037
  21. K. K. Amirtharaj Mosas, A. R. Chandrasekar, A. Dasan, A. Pakseresht, y D. Galusek, “Recent Advancements in Materials and Coatings for Biomedical Implants”, Gels, vol. 8, n.o 5, 2022, doi: https://doi.org/10.3390/gels8050323
  22. A. M. Mizuno, J. P. Daza-Cuadros, C. E. Quintero-Quiroz, D. Y. Peña-Ballesteros, and A. A. Sandoval-Amador, “Capacity of apatite formation of thin films of hydroxyapatite modified by laser ablation”, Rev. Fac. Ing., vol. 28, no. 51, pp. 9–23, 2019, doi: https://doi.org/10.19053/01211129.v28.n51.2019.9080
  23. B. Gago et al., “Biomedical Applications of Laser Texturing”, en Materials Development and Processing for Biomedical Applications, CRC Press, 2022.
  24. N. Garcia-de-Albeniz, M.-P. Ginebra, E. Jimenez-Piqué, J. J. Roa, C. Mas-Moruno, “Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response”, Dental Materials, vol. 40, n.o 1, pp. 139-150, 2024, doi: https://doi.org/10.1016/j.dental.2023.10.026
  25. J. Gil et al., “Mineralization of Titanium Surfaces: Biomimetic Implants”, Materials, vol. 14, no. 11, 2021, doi: https://doi.org/10.3390/ma14112879
  26. H.W. An, J. Lee, y J. W. Park, “Surface characteristics and in vitro biocompatibility of surface-modified titanium foils as a regenerative barrier membrane for guided bone regeneration”, J Biomater Appl, vol. 37, n.o 7, pp. 1228-1242, 2023, doi: https://doi.org/10.1177/08853282221132351
  27. J. A. Killion, L. M. Geever, D. M. Devine, J. E. Kennedy, y C. L. Higginbotham, “Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application”, J Mech Behav Biomed Mater, vol. 4, no. 7, pp. 1219-1227, 2011, doi: https://doi.org/10.1016/j.jmbbm.2011.04.004
  28. D. Lops et al., “Osteoproperties of polyethylene glycol hydrogel material”, Journal of Osseointegration, vol. 6, no. 3, oct. 2014, doi: https://doi.org/10.23805/jo.2014.06.03.04
  29. S.F. Wang, Y. C. Wu, Y. C. Cheng, W. W. Hu, “The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application”, Polymers, vol. 13, n.o 11, 2021, doi: https://doi.org/10.3390/polym13111740
  30. W. Wattanutchariya, K. Suttiat, “Characterization of Polylactic/Polyethylene glycol/Bone Decellularized Extracellular Matrix Biodegradable Composite for Tissue Regeneration”, Chiang Mai University Journal of Natural Sciences, vol. 21, no. 1, 2022, doi: https://doi.org/10.12982/CMUJNS.2022.008
  31. R. Kumar, S. Mohanty, “Hydroxyapatite: A Versatile Bioceramic for Tissue Engineering Application”, J Inorg Organomet Polym, vol. 32, n.o 12, pp. 4461-4477, 2022, doi: https://doi.org/10.1007/s10904-022-02454-2
  32. Z. Bal, T. Kaito, F. Korkusuz, y H. Yoshikawa, “Bone regeneration with hydroxyapatite-based biomaterials”, emergent mater., vol. 3, n.o 4, pp. 521-544, ago. 2020, doi: https://doi.org/10.1007/s42247-019-00063-3
  33. F. C. G. Rueda, D. Y. P. Ballesteros, y H. A. E. Durán, “Comportamiento morfológico y electroquímico de un recubrimiento Dip Coating policaprolactona-quitosano-colágeno sobre Ti6Al4V”, Revista mexicana de ingeniería biomédica, vol. 38, n.o 1, pp. 54-75.
  34. K. Guillén-Carvajal, B. Valdez-Salas, E. Beltrán-Partida, J. Salomón-Carlos, y N. Cheng, “Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration”, Polymers, vol. 15, n.o 13, Art. n.o 13, ene. 2023, doi: https://doi.org/10.3390/polym15132762
  35. D. Rianti et al., “Application of chitosan-gelatin-carbonate hydroxy apatite scaffold toward the number of osteoblasts in alveolar bone defects in Wistar Rats”, World Journal of Advanced Research and Reviews, vol. 18, no. 3, 2023, doi: https://doi.org/10.30574/wjarr.2023.18.3.0840
  36. A. S. Pádua, L. Figueiredo, J. C. Silva, y J. P. Borges, “Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass”, Prog Biomater, vol. 12, no. 2, pp. 137-153, 2023, doi: https://doi.org/10.1007/s40204-023-00217-x
  37. A Sandoval Amador1, S M Guerrero-Barajas1, D R Hernandez-Salas1, D K Sierra-Herrera1, H A Estupiñan-Duran and D Y Peña Ballesteros, “In vitro electrochemical behaviour of Chitosan-PEG coatings obtained on Ti6Al4V by dip coating”, IOPscience, doi: https://doi.org/10.1088/1742-6596/935/1/012030
  38. Montañez Supelano, Nerly Deyanira, “Evaluación de la respuesta dieléctrica de membranasbiologicas sobre material polimerico PLA – PGA modificado, bajo polarizacion AC y DC,” proyecto fin de master, Universidad Industrial de Santander, 2011.
  39. N. M. Pareja, D. M. Escobar, C. P. Ossa, y A. Echavarría, “Synthesis and characterization of microporous hydroxyapatite, comparison with a commercial product”, Revista Facultad de Ingeniería Universidad de Antioquia, no. 43, 2008, doi: https://doi.org/10.17533/udea.redin.18629
  40. C. Guzmán Vázquez, C. Piña Barba, y N. Munguía, “Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes”, Revista mexicana de física, vol. 51, no. 3, pp. 284-293, 2005.
  41. R. oliver Santos, “Biomaterial de implante óseo compuesto de HAP-polivinilacetato”, Revista CENIC Ciencias Químicas, 2004.
  42. K. Azzaoui et al., “Synthesis of hydroxyapatite/polyethylene glycol 6000 composites by novel dissolution/precipitation method: optimization of the adsorption process using a factorial design: DFT and molecular dynamic”, BMC Chemistry, vol. 17, no. 1, p. 150, 2023, doi: https://doi.org/10.1186/s13065-023-01061-7
  43. N. Bhattarai, H. R. Ramay, J. Gunn, F. A. Matsen, y M. Zhang, “PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release”, J Control Release, vol. 103, no. 3, pp. 609-624, 2005, doi: https://doi.org/10.1016/j.jconrel.2004.12.019
  44. F. Ganji, M. J. Abdekhodaie, “Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer”, Carbohydrate Polymers, vol. 74, no. 3, pp. 435-441, 2008, doi: https://doi.org/10.1016/j.carbpol.2008.03.017
  45. N. Rodríguez Hamamura, A. Valderrama Negrón, H. Alarcón Cavero, y A. López Milla, “Preparación de partículas de quitosano reticuladas con tripolifosfato y modificadas con polietilenglicol”, Revista de la Sociedad Química del Perú, vol. 76, pp. 336-354, 2010.