Vol. 23 Núm. 1 (2024): Revista UIS Ingenierías
Artículos

Evaluación del Perfil de Microdureza y Tensiones Residuales en un Acero Granallado SAE 5160H

Alexander Viloria-Estrada
Industrias Metálicas Asociadas S.A
David Mantilla-Nova
Industrias Metálicas Asociadas S.A
Daiver Alberto García-Salinas
CONFIPETROL
Wilmar Barbosa
UNIMINEX
Claudia Constanza Palacio-Espinosa
Universidad EAFIT
Fidel Alfonso Romero-Toledo
Universidad Pedagógica y Tecnológica de Colombia
Dario Yesid Peña-Ballesteros
Universidad Industrial de Santander
Jorge Guillermo Díaz-Rodríguez
Tecnológico de Monterrey

Publicado 2024-04-15

Palabras clave

  • Granallado,
  • microdureza Vickers,
  • SAE 5160H,
  • esfuerzos residuales,
  • resortes de ballesta

Cómo citar

Viloria-Estrada, A., Mantilla-Nova, D., García-Salinas, D. A., Barbosa, W., Palacio-Espinosa, C. C. ., Romero-Toledo, F. A., Peña-Ballesteros, D. Y., & Díaz-Rodríguez , J. G. (2024). Evaluación del Perfil de Microdureza y Tensiones Residuales en un Acero Granallado SAE 5160H. Revista UIS Ingenierías, 23(1), 103–114. https://doi.org/10.18273/revuin.v23n1-2024009

Resumen

El granallado es una técnica de procesamiento de superficies en frío que en metales se usa para aumentar la vida bajo esfuerzos cíclicos. En este caso, el granallado se aplicó a muestras de acero SAE5160H (usado en resortes de ballesta) templado en aceite y revenido a 460 °C. En este estudio, se midieron esfuerzos residuales por medio de difracción de rayos X (DRX) y la dureza en la superficie perpendicular al tratamiento usando una combinación de pulido para metalografía y microdureza Vickers. Para el material procesado con granallado, las mediciones superficiales de DRX arrojaron una media de 365.8 MPa en compresión y una microdureza máxima de 525 ± 92.7 HVN. Por otro lado, para el material no procesado, se obtuvo una tensión residual positiva promedio de 54.2 MPa y 433 ± 39,5 HVN. Adicionalmente, ensayos de potencial electroquímico arrojaron que el granallado aumenta el potencial de corrosión, lo que hace este proceso indeseable si el componente granallado está expuesto a ambientes agresivos. La combinación de técnicas experimentales usadas permite estimar el cambio de dureza en la superficie perpendicular al granallado en mediciones discretas tan juntas como 10µm, pero con una preparación de probeta más simple que la requerida por otras técnicas como DRX o las galgas extensiométricas. Dicha combinación se puede ser alternativa para la estimación de esfuerzos residuales a través de la profundidad.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. J. T. P. Castro and M. Meggiolaro, Fatigue Design Techniques, Vol I, 3rd ed. Scotts Valley, CA, USA: CreateSpace, 2016.
  2. D. Kirk, “Quantification of shot peening coverage,” The Shot Peener, Mishawaka, pp. 22–34, Jan. 2014.
  3. H. Hernández, A. Viloria, Y. Arango, A. Jiménez, H. Mendoza, J. Cadena, “Mejoramiento del proceso de granallado para resortes de ballesta utilizando medición de esfuerzos residuales por difracción de rayos X,” Revista Ingeniería e Investigación, no. 56, pp. 33–40, 2004.
  4. H. E. Jaramillo, N. A. de Sánchez, J. A. Ávila, “Effect of the shot peening process on the fatigue strength of SAE 5160 steel,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 233, no. 12, pp. 4328–4335, 2019, doi: https://doi.org/10.1177/0954406218816349
  5. SAE, “SAE J443. Procedures for Using Standard Shot Peening Test Strip,” SAE International, 2018. doi: https://doi.org/10.4271/J443_198401
  6. ASTM, “ASTM E 2860. Standard Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels,” 2012.
  7. A. Mičietová, M. Čilliková, R. Čep, B. Mičieta, J. Uríček, M. Neslušan, “An Investigation of Residual Stresses after the Turning of High-Tempered Bearing Steel,” Machines, vol. 12, no. 2, p. 139, 2024, doi: https://doi.org/10.3390/machines12020139
  8. L. D. Rodrigues, J. L. F. Freire, R. D. Viera, “Desenvolvimento e avaliação experimental de uma nova técnica para medição de tensões residuais,” Revista Matéria UFRJ, vol. 16, no. 4, pp. 842–856, 2011.
  9. C. Inglis, “Stresses in Plates Due to the Presence of Cracks and Sharp Corners,” Transactions of the Institute of Naval Architects, vol. 55, pp. 219–241, 1913.
  10. J. Muñoz-Cubillos, J. J. Coronado, S. A. Rodríguez, “Deep rolling effect on fatigue behavior of austenitic stainless steels,” Int J Fatigue, vol. 95, pp. 120–131, Feb. 2017, doi: https://doi.org/10.1016/j.ijfatigue.2016.10.008
  11. B. Xia et al., “Improving the high-cycle fatigue life of a high-strength spring steel for automobiles by suitable shot peening and heat treatment,” Int J Fatigue, vol. 161, p. 106891, Aug. 2022, doi: https://doi.org/10.1016/j.ijfatigue.2022.106891
  12. Y. Li, P. Wei, X. Zhao, R. Zhu, J. Wu, H. Liu, “A novel approach of shot peening process parameters prediction with missing surface integrity data based on imputation method,” The International Journal of Advanced Manufacturing Technology, May 2023, doi: https://doi.org/10.1007/s00170-023-11514-x
  13. S. A. Ojo et al., “Improving fatigue life of additively repaired Ti-6Al-4V subjected to laser-assisted ultrasonic nanocrystal surface modification,” Int J Fatigue, vol. 173, p. 107663, 2023, doi: https://doi.org/10.1016/j.ijfatigue.2023.107663
  14. S. Aguado-Montero, J. Vázquez, C. Navarro, J. Domínguez, “Optimal shot peening residual stress profile for fatigue,” Theoretical and Applied Fracture Mechanics, vol. 116, p. 103109, 2021, doi: https://doi.org/10.1016/j.tafmec.2021.103109
  15. E. H. Judd, Spring Design Manual. Warrendale PA: SAE, 1996.
  16. D. Mantilla, N. Arzola, O. Araque, “Optimal design of leaf springs for vehicle suspensions under cyclic conditions,” Ingeniare. Revista chilena de ingeniería, vol. 30, no. 1, pp. 23–36, 2022, doi: https://doi.org/10.4067/S0718-33052022000100023
  17. M. Yetna N’Jock, D. Chicot, X. Decoopman, J. Lesage, J. M. Ndjaka, A. Pertuz, “Mechanical tensile properties by spherical macroindentation using an indentation strain-hardening exponent,” Int J Mech Sci, vol. 75, pp. 257–264, Oct. 2013, doi: https://doi.org/10.1016/j.ijmecsci.2013.07.008
  18. D. G. Agredo-Diaz et al., “Evaluation of the corrosion resistance of an additive manufacturing steel using electrochemical techniques,” Revista UIS Ingenierías, vol. 19, no. 4, pp. 213–222, 2020, doi: https://doi.org/10.18273/revuin.v19n4-2020018
  19. C. Lopez-Crespo, A. S. Cruces, S. Seitl, B. Moreno, P. Lopez-Crespo, “Estimation of the Plastic Zone in Fatigue via Micro-Indentation,” Materials, vol. 14, no. 19, p. 5885, Oct. 2021, doi: https://doi.org/10.3390/ma14195885
  20. A. D. Pertuz-Comas, O. A. González-Estrada, E. Martínez-Díaz, D. F. Villegas-Bermúdez, J. G. Díaz-Rodríguez, “Strain-Based Fatigue Experimental Study on Ti–6Al–4V Alloy Manufactured by Electron Beam Melting,” Journal of Manufacturing and Materials Processing, vol. 7, no. 1, p. 25, Jan. 2023, doi: https://doi.org/10.3390/jmmp7010025
  21. M. Vormwald, Y. Hos, J. L. F. Freire, G. L. G. Gonzáles, J. G. Díaz, “Variable mode-mixity during fatigue cycles – crack tip parameters determined from displacement fields measured by digital image correlation,” Frattura ed Integrità Strutturale, vol. 11, no. 41, pp. 314–322, Jun. 2017, doi: https://doi.org/10.3221/IGF-ESIS.41.42
  22. J. G. Díaz-Rodríguez, G. L. Gonzales, J. A. Ortiz Gonzalez, J. L. de F. Freire, “Analysis of Mixed-mode Stress Intensity Factors using Digital Image Correlation Displacement Fields,” in Proceedings of the 24th ABCM International Congress of Mechanical Engineering, ABCM, Ed., Curitiba: ABCM, 2017. doi: https://doi.org/10.26678/ABCM.COBEM2017.COB17-0684
  23. S. Vantadori, A. Zanichelli, “Fretting‐fatigue analysis of shot‐peened aluminium and titanium test specimens,” Fatigue Fract Eng Mater Struct, no. September, p. ffe.13367, Oct. 2020, doi: https://doi.org/10.1111/ffe.13367
  24. F. Romero, A. Pertuz, and J. G. Diaz, “Fatigue study on AISI/SAE 1015 steel with shot peening under corrosive environments,” J Phys Conf Ser, vol. 1938, no. 1, p. 012005, May 2021, doi: https://doi.org/10.1088/1742-6596/1938/1/012005
  25. SAE, “SAE J442. Test Strip, Holder, and Gage for Shot Peening,” 2013. doi: https://doi.org/10.4271/J442_201302
  26. J. G. Díaz-Rodríguez, “Comparison of stress separation procedures. experiments versus theoretical formulation,” Engineering Solid Mechanics, vol. 10, no. 2, pp. 153–164, 2022, doi: https://doi.org/10.5267/j.esm.2022.1.003
  27. ASTM, “ASTM E 837. Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” 2013.
  28. F. Valiorgue et al., “Influence of residual stress profile and surface microstructure on fatigue life of a 15-5PH,” Procedia Eng, vol. 213, pp. 623–629, 2018, doi: https://doi.org/10.1016/j.proeng.2018.02.058
  29. B. Reggiani, G. Olmi, “Experimental Investigation on the Effect of Shot Peening and Deep Rolling on the Fatigue Response of High Strength Fasteners,” Metals (Basel), vol. 9, no. 10, p. 1093, 2019, doi: https://doi.org/10.3390/met9101093