Calibration of the Torrentiality Index for Extreme Flow Estimation in the Northwestern Andean Region of Colombia
Published 2025-03-12
Keywords
- calibration,
- extreme flows,
- hydrological basins,
- probability distribution functions,
- torrenciality index
- spatial interpolation,
- modified rational method,
- precipitation,
- Andean region ...More
How to Cite
Copyright (c) 2025 Revista UIS Ingenierías

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The estimation of extreme flows in a watershed is essential for risk and disaster management, the design of hydraulic structures and land use planning. The modified rational method of Témez, used to estimate peak flows, considers a torrentiality index that varies according to the geographical area. In Spain, there is an isoline map with index values between 8 and 12, while in the Colombian Andean region a general value of 11 has been used in several consulting studies. The objective of this study is to calibrate the torrentiality index in basins of the northwestern zone of Colombian Andean region, which includes the departments: Antioquia, Quindío, Caldas, Risaralda, Tolima and Huila. The methodology consisted of collecting and analyzing historical hydrometeorological data with records longer than 15 years from limnigraphic, limnimetric and precipitation stations of the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). Normal, Log normal, Gumbel and Log Pearson probability distribution functions (PDF) were applied. The selection of the PDF was made using the Kolmogorov-Smirnov test, which was used to estimate rainfall for the return periods of 10, 50, 100 and 200 years, and to obtain the mean daily intensity values (Id). Also, intensity-duration-frequency curves were prepared, and hourly intensity values (I1) were estimated for the different return periods. Subsequently, the torrentiality index equation (I1/Id) was applied, obtaining values between 9.7 and 15.5. The isoline map of the torrentiality index in the studied area was generated by means of a geostatistical analysis and spatial interpolation using Ordinary Kriging. This map allows the determination of the specific torrentiality index for each basin, applicable in the modified rational method. The validation of the observed and simulated flows shows a Nash-Sutcliffe efficiency between 0.77 and 0.95, indicating high acceptability of the errors of the objective functions.
Downloads
References
- A. M. R. Cañón et al., “Guía metodológica para zonificación de amenaza por avenidas torrenciales,” Servicio Geológico Colombiano, 2021. [Online]. Available: http://201.130.16.43/handle/20.500.11762/36977
- S. Machuca, H. García-Delgado, A. M. Ramos-Cañón, “Assessing torrentiality in catchments of the tropical Andes: A morphometric approach,” J South Am Earth Sci, vol. 134, p. 104775, 2024, doi: https://doi.org/10.1016/j.jsames.2023.104775
- M. Costea, “Torrentiality – Morphohydrographical conditions in the Sebeş Basin (The Parâng Mountains Group, Southern Carpathians),” Forum geografic, vol. XI, no. 2, pp. 195–208, 2012, doi: http://doi.org/10.5775/fg.2067-4635.2012.073.d
- N. J. Cely-Calixto, G. A. C. Soto, D. Becerra-Moreno, “Validation of the modified Témez rational model in the watersheds of Norte de Santander, Colombia,” in Journal of Physics: Conference Series, 2021, doi: http://doi.org/10.1088/1742-6596/2073/1/012017
- F. Oñate-Valdivieso, J. Bosque-Sendra, A. Sastre-Merlin, V. M. Ponce, “Calibration, validation and evaluation of a lumped hydrilogic model in a mountain area in southern Ecuador,” Agrociencia 50, vol. 50, no. 8, pp. 944–963, 2016.
- Ministerio de Fomento, “Orden FOM/298/2016 España,” 2016. [Online]. Available: https://www.boe.es/eli/es/o/2016/02/15/fom298
- R. Díaz Gómez, F. J. Gaspari, S. M. GeorGieff, “Aspectos morfométricos de cuencas subtropicales del Noroeste de Argentina,” Acta geológica lilloana, vol. 29, no. 1, pp. 1–12, 2017.
- MTC, “Manual de hidrologia hidraulica y drenaje,” 2011, Lima: empresa editora macro eirl. [Online]. Available: https://www.aguasresiduales.info/revista/libros/manual-de-hidrologia-hidraulica-y-drenaje
- Y. Vargas-Peñaranda, N. Cely-Calixto, G. Carrillo-Soto, “Estimación de caudales extremos no instantáneos en cuencas de la región nororiental andina de Colombia,” Revista UIS Ingenierías, vol. 23, no. 2, 2024, doi: https://doi.org/10.18273/revuin.v23n2-2024008
- V. Te Chow, D. R. Maidment, L. W. Mays, Hidrología aplicada. 2000th ed., vol. 146. 1994.
- J. Bustamante Albert, “Proyecto de diseño de instalaciones hidráulicas en un parque público de Pozuelo de Alarcón,” 2019.
- Invias, “Manual de drenaje para carreteras,” 2009. [Online]. Available: https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/especificaciones-tecnicas/984-manual-de-drenaje-para-carreteras
- D. Solla, C. Acuña-Alonso, C. Peco-Costas, X. Álvarez, “Flooding study of the Loira River (Galicia, Spain): Importance of pre-evaluation in land management,” Clean Eng Technol, vol. 21, p. 100769, 2024, doi: https://doi.org/10.1016/j.clet.2024.100769
- R. E. Pérez, M. Cortés-Molina, F. J. Navarro-González, “Analysis of rainfall time series with application to calculation of return periods,” Sustainability, vol. 13, no. 14, p. 8051, 2021, doi: https://doi.org/10.3390/su13148051
- L. F. Parra-Gómez, F. L. Franco-Idárraga, “Gestión natural de inundaciones,” Revista UIS Ingenierías, vol. 23, no. 2, pp. 143–158, 2024, doi: https://doi.org/10.18273/revuin.v23n2-2024009
- L. M. López Villar, D. A. Velasco Becerra, S. Santos Hurtado, “Impact on urban drainage taking into account the rainwater harvesting in a rural district,” LACCEI, vol. 1, no. 8, 2023, doi: https://doi.org/10.18687/LACCEI2023.1.1.1376
- E. N. Dethier, S. L. Sartain, C. E. Renshaw, F. J. Magilligan, “Spatially coherent regional changes in seasonal extreme streamflow events in the United States and Canada since 1950,” Sci Adv, vol. 6, no. 49, p. eaba5939, 2020, doi: https://doi.org/10.1126/sciadv.aba5939
- A. Huang et al., “Spatiotemporal variations of inter-and intra-annual extreme streamflow in the Yangtze River Basin,” J Hydrol (Amst), vol. 629, p. 130634, 2024, doi: https://doi.org/10.1016/j.jhydrol.2024.130634
- R. Giraldo, P. Delicado, J. Mateu, “Ordinary kriging for function-valued spatial data,” Environ Ecol Stat, vol. 18, pp. 411–426, 2011, doi: https://doi.org/10.1007/s10651-010-0143-y
- P. Fernandez, E. Delgado, M. Lopez-Alonso, J. M. Poyatos, “GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration,” Science of the Total Environment, vol. 613, pp. 1154–1164, 2018, doi: https://doi.org/10.1016/j.scitotenv.2017.09.190
- M. S. Bustos, S. M. Georgieff, “Análisis morfométrico de los principales tributarios del río Salí en la cuenca de Tapia-Trancas a partir del procesamiento en SIG y sensoramiento remoto,” 2020.
- K. Roushangar, R. Khoshkanar, J. Shiri, “Predicting trapezoidal and rectangular side weirs discharge coefficient using machine learning methods,” ISH Journal of Hydraulic Engineering, vol. 22, no. 3, pp. 254–261, 2016, doi: https://doi.org/10.1080/09715010.2016.1177740
- L. Nouri, G. Mahtabi, S. H. Hosseini, C. V. S. R. Prasad, “Hydrological responses to future climate change in semi-arid region of Iran (Golabar and Taham Basins, Zanjan Province),” Results in Engineering, vol. 21, p. 101871, 2024, doi: https://doi.org/10.1016/j.rineng.2024.101871