Articles
Determination of parameters associated to the wavelet filter by umbralization applied to filtered electrocardiographic interferences
Published 2007-10-19
Keywords
- Wavelet,
- ECG,
- EKG,
- SWT,
- filter
- shrinkage ...More
How to Cite
Olarte Rodríguez, O. J., & Sierra Bueno, D. A. (2007). Determination of parameters associated to the wavelet filter by umbralization applied to filtered electrocardiographic interferences. Revista UIS Ingenierías, 6(2), 33–44. Retrieved from https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/404
Abstract
The parameters of a wavelet shrinkage fltering system for ECG signal treatment are discussed and evaluated. The studied parameters are: wavelet order, number of decomposition levels to evaluate, threshold estimator type, wavelet family type (shift variant or shift invariant), and wavelet family. The study includes a revision of the state of the art and experimental verifcations. A reliable system is defned in this way, and not only based in the morphologic considerations and similarities between the ECG signal and the wavelet function.
Downloads
Download data is not yet available.
References
D.I. Donoho, “De-noising by soft-thresholding,” IEEE Trans. on Information theory, vol. 41, No. 3, May
1995, pp 613-627.
Y. Xu, J.B. Weaver, D. M. Healy, and J. Lu, “Wavelet transform domain flters: A spatially selective noise filtration technique,” IEEE Trans. On Image Processing, vol 3, No.6, Nov 1994, pp. 747-758.
S. Mallat, W.L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. On Information
Theory, vol. 38, No. 2, March 1992, pp. 617-643.
D. Guo, W. Zhu, Z. Gao, J. Zhang, “A study of wavelet thresholding denoising,” Proceedings of the 5th International Conference on Signal Processing (ICSP 2000), pp. 329-332.
G. M. Friesen, T. C. Jannett, M. Affy Jadallah, S. L. Yates, S. R. Quint, and H. Troy Nagle, “A comparison of
the noise sensitivity of nine QRS detection algorithms,” IEEE Trans. On Biomedical Eng. Vol 37, No. 1, January 1990, pp. 85-98.
C. K. Chuy, Wavelets: A Mathematical Tool for Signal Processing, Philadelphia, PA: SIAM, 1997, 210 pp.
O. J. Olarte y C. A. Niño, Implementación de una Toolbox Básica para Tratamiento de Señales con Wavelets en un Procesador Digital de Señales, [Tesis de Pregrado] Universidad Industrial de Santander, Bucaramanga, 2004, Available: http://chorlito.uis.edu.co/tesis/2004/112683. pdf [Visitado Noviembre 2006]
S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1999, 637 pp.
C. Schremmer, T. Haenselmann, and F. Bomers, “A wavelet based audio denoiser.” Available: http://citeseer.ist.psu.edu/schremmer01wavelet.html [Visitado Enero 2007].
C. Cai and P.D.B. Harrington, “Different discrete wavelet transforms applied to denoising analytical data,” J. Chem. Inf. Comput. Sci., Vol. 38, No. 6, November 1998, pp. 1161-1170.
A.K. Fletcher, V. K. Goyal, and K. Ramchandran “Iterative projective wavelet methods for denoising,” Proceedings of SPIE, Vol. 5207, 2003, pp. 9-15.
M. Misiti, Y. Misiti, G. Oppenheim, and J.M. Poggi, “Wavelet Toolbox User’s Guide,” The Mathworks, Inc., Version 2.
D. Zhang, “Wavelet approach for ECG baseline wander correction and noise reduction,” Proceedings 27th Int. Conf. of the IEEE Eng. In Medicine and Biology Society, 2005, pp. 1212-1215.
P.D. Agoris, S. Meijer, E. Gulski, and J.J. Smit, “Threshold selection for wavelet denoising of partial discharge data,” IEEE International Symposium on Electrical Insulation, USA, September 2004, pp. 19-22.
P. Quan, L. Zhang, G. Dai, and H. Zhang, “Two denoising methods by wavelet transform,” IEEE Trans. On Signal Processing, vol 47, No. 12, December 1999, pp. 3401-3406.
R. R. Coifman, and D.L. Donoho “Translationinvariant de-noising,” Yale University and Stanford
University, 1995. Available: http://citeseer.ist.psu. edu/80329.html [Visited: March 21, 2007].
M. Lang, H. Guo, J. E. Odegard, C.S. Burrus, and R. O. Wells, “Nonlinear processing of a shift invariant DWT for noise reduction,” Proceedings of SPIE, Vol. 2491, April 1995, pp. 640-651.
P. Carre, and C. Fernandez, “Undecimated wavelet shrinkage estimate of the 1D and 2D spectra,” Proceedings of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2000, pp. 2310-2313.
S. Nibhanupudi, Signal Denoising Using Wavelets, [M.S. Thesis] University Of Cincinnati, Cincinnati, OH, 2003.
D. Ballesteros, “Reducción de ruido en señales ECG utilizando fltros wavelet,” Fundación Univ. Manuela Beltrán. Memorias ANDESCON 2004, Bogotá, Colombia.
N.V. Thakor, J.G. Webster, W.J. Tomkins, “Estimation of QRS complex power spectra for design of a QRS filter,” IEEE Trans. On Biomedical Eng., vol 31, No 11, November 1984, pp. 702-705.
O. J. Olarte, Sistema de reconocimiento y diagnóstico de arritmias cardiacas aplicado a la identifcación de taquicardias de complejos anchos a partir del electrocardiograma, [Tesis de Maestría] Universidad Industrial de Santander, Bucaramanga, 2007.
J. González, J. Barrero, “Implementación de fltros adaptativos en DSP aplicados al tratamiento de interferencia de 60 Hz y desplazamiento de la línea de base del ECG,” Memorias del XI Simposio de tratamiento de Señales, Imágenes y Visión Artifcial, Bogotá, 2006.
Physiobank, http://www.physionet.org/physiobank [Visitado Septiembre, 2006].
1995, pp 613-627.
Y. Xu, J.B. Weaver, D. M. Healy, and J. Lu, “Wavelet transform domain flters: A spatially selective noise filtration technique,” IEEE Trans. On Image Processing, vol 3, No.6, Nov 1994, pp. 747-758.
S. Mallat, W.L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. On Information
Theory, vol. 38, No. 2, March 1992, pp. 617-643.
D. Guo, W. Zhu, Z. Gao, J. Zhang, “A study of wavelet thresholding denoising,” Proceedings of the 5th International Conference on Signal Processing (ICSP 2000), pp. 329-332.
G. M. Friesen, T. C. Jannett, M. Affy Jadallah, S. L. Yates, S. R. Quint, and H. Troy Nagle, “A comparison of
the noise sensitivity of nine QRS detection algorithms,” IEEE Trans. On Biomedical Eng. Vol 37, No. 1, January 1990, pp. 85-98.
C. K. Chuy, Wavelets: A Mathematical Tool for Signal Processing, Philadelphia, PA: SIAM, 1997, 210 pp.
O. J. Olarte y C. A. Niño, Implementación de una Toolbox Básica para Tratamiento de Señales con Wavelets en un Procesador Digital de Señales, [Tesis de Pregrado] Universidad Industrial de Santander, Bucaramanga, 2004, Available: http://chorlito.uis.edu.co/tesis/2004/112683. pdf [Visitado Noviembre 2006]
S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1999, 637 pp.
C. Schremmer, T. Haenselmann, and F. Bomers, “A wavelet based audio denoiser.” Available: http://citeseer.ist.psu.edu/schremmer01wavelet.html [Visitado Enero 2007].
C. Cai and P.D.B. Harrington, “Different discrete wavelet transforms applied to denoising analytical data,” J. Chem. Inf. Comput. Sci., Vol. 38, No. 6, November 1998, pp. 1161-1170.
A.K. Fletcher, V. K. Goyal, and K. Ramchandran “Iterative projective wavelet methods for denoising,” Proceedings of SPIE, Vol. 5207, 2003, pp. 9-15.
M. Misiti, Y. Misiti, G. Oppenheim, and J.M. Poggi, “Wavelet Toolbox User’s Guide,” The Mathworks, Inc., Version 2.
D. Zhang, “Wavelet approach for ECG baseline wander correction and noise reduction,” Proceedings 27th Int. Conf. of the IEEE Eng. In Medicine and Biology Society, 2005, pp. 1212-1215.
P.D. Agoris, S. Meijer, E. Gulski, and J.J. Smit, “Threshold selection for wavelet denoising of partial discharge data,” IEEE International Symposium on Electrical Insulation, USA, September 2004, pp. 19-22.
P. Quan, L. Zhang, G. Dai, and H. Zhang, “Two denoising methods by wavelet transform,” IEEE Trans. On Signal Processing, vol 47, No. 12, December 1999, pp. 3401-3406.
R. R. Coifman, and D.L. Donoho “Translationinvariant de-noising,” Yale University and Stanford
University, 1995. Available: http://citeseer.ist.psu. edu/80329.html [Visited: March 21, 2007].
M. Lang, H. Guo, J. E. Odegard, C.S. Burrus, and R. O. Wells, “Nonlinear processing of a shift invariant DWT for noise reduction,” Proceedings of SPIE, Vol. 2491, April 1995, pp. 640-651.
P. Carre, and C. Fernandez, “Undecimated wavelet shrinkage estimate of the 1D and 2D spectra,” Proceedings of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2000, pp. 2310-2313.
S. Nibhanupudi, Signal Denoising Using Wavelets, [M.S. Thesis] University Of Cincinnati, Cincinnati, OH, 2003.
D. Ballesteros, “Reducción de ruido en señales ECG utilizando fltros wavelet,” Fundación Univ. Manuela Beltrán. Memorias ANDESCON 2004, Bogotá, Colombia.
N.V. Thakor, J.G. Webster, W.J. Tomkins, “Estimation of QRS complex power spectra for design of a QRS filter,” IEEE Trans. On Biomedical Eng., vol 31, No 11, November 1984, pp. 702-705.
O. J. Olarte, Sistema de reconocimiento y diagnóstico de arritmias cardiacas aplicado a la identifcación de taquicardias de complejos anchos a partir del electrocardiograma, [Tesis de Maestría] Universidad Industrial de Santander, Bucaramanga, 2007.
J. González, J. Barrero, “Implementación de fltros adaptativos en DSP aplicados al tratamiento de interferencia de 60 Hz y desplazamiento de la línea de base del ECG,” Memorias del XI Simposio de tratamiento de Señales, Imágenes y Visión Artifcial, Bogotá, 2006.
Physiobank, http://www.physionet.org/physiobank [Visitado Septiembre, 2006].