Vol. 13 No. 1 (2014): Revista UIS Ingenierías
Articles

Toxicity evaluation of an industrial waste stabilized/solidified with Portland cement

Carolina Martínez-López
Universidad Nacional de Colombia
Bio
Janneth Torres-Agredo
Universidad Nacional de Colombia
Bio
Ruby Mejía-de Gutiérrez
Universidad del Valle
Bio

Published 2014-01-20

Keywords

  • Solidification/Stabilization,
  • spent catalytic cracking catalyst,
  • portland cement

How to Cite

Martínez-López, C., Torres-Agredo, J., & Mejía-de Gutiérrez, R. (2014). Toxicity evaluation of an industrial waste stabilized/solidified with Portland cement. Revista UIS Ingenierías, 13(1), 47–54. Retrieved from https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/47-54

Abstract

This study evaluates the toxicity associated with Portland cement mortar blended with a residue of the petrochemical industry called catalytic cracking catalyst waste (FCC) using the technique of Solidifcation/Stabilization (S/E). The techniques of X-Ray Fluorescence, X-Ray diffraction and Infrared Spectroscopy permitted to evaluate the Chemical and mineralogical characteristics of the residue. Leaching of heavy metals on blended mortars with 20% w/w of FCC - determined by the tests Toxicity Characteristic Leaching Procedure (TCLP), Synthetic Precipitation Leaching Procedure (SPLP) and NEN 7341 - showed that the encapsulated waste is not a problem from of point of view of environmental issues. The research results of this study are in accord with the environmental standards. The use of FCC surges as a positive alternative for appropriated disposition of materials containing heavy metals.

Downloads

Download data is not yet available.

References

  1. BOZKURT, S.; MORENO, L.; NERETNIEKS, I. Long term processes in waste deposits. The Science of Total Environment. 2000, vol. 250, núm. 1-3, pp.101–121.
  2. CHAABAN, M.A. Hazardous waste source reduction in materials and processing technologies. Materials and Processing Technologies. 2001, vol. 119, núm. 1-3, pp.336–343.
  3. TALINLI, I.; YAMANTÜRK, R.; AYDIN, E.; BASAKCILARDAN-KABAKS, S. A rating system for determination of hazardous wastes. Journal of Hazardous Materials. 2005, vol. 126, núm. 1-3, pp. 23–30.
  4. GOLLMANN, M.; DA SILVA, M.; MASUERO, A.; DOS SANTO, J.H. Stabilization and solidification of Pb in cement matrices. Journal of Hazardous Materials. 2010, vol. 179, núm. 1-3, pp. 507–514.
  5. OLIVEIRA, D.M; CASTILHOS, J.A.; MIOTELLO, E. Avaliacáo da solidificacáo/estabilizacáo de borras oleosas utilizando caulinita e vermiculita como materials adsorbentes. XXII Congresso Brasileiro de Engenharia Sanitaria e Ambiental. Joinville Santa Catarina: 2003, pp. 1-18.
  6. LA GREGA, M.D.; BUCKINGHAM, P.L.; EVANS, J.C. Hazardous wastes management. 2a edición. New Jersey: McGraw- Hill, 2001. 1202 p.
  7. WILSON, D.; BALKAU, F.; THURGOOD, M. Solidificación y Estabilización. Manual de Formación en gestión de residuos peligrosos para países en vías de desarrollo. 2002. . [consulta: 31 -1- 2013].
  8. CONNER, J.R. Chemical Fixation and Solidification of Hazardous Wastes. New York: Van Nostrand Reinhold, 1990. 692 p. ISBN.0-442-20511-2
  9. PARIA, S.; YUET, P.K. Solidification/Stabilization of organics and inorganics contaminants using portland cement: a literature review. Environmental Reviews. 2006, vol. 14, pp. 217-255.
  10. AL–TAABA, A.; PROSE, S.; Treatment Study for in –Situ Stabilization/Solidification of soil contaminated with methylene Blue. Environmental Technology. 1996, vol. 17, núm. 2, pp.191-197. Instituto de investigaciones jurídicas. La industria petrolera ante la regulación jurídico-ecológica en México. 1ª edición. Universidad Nacional Autónoma de México, Ciudad universitaria, México, 1992, 251p. ISBN 968-36-2378-6.
  11. PACEWSKA, B.; BUKOWSK, M.; WILINSKA, I. Influence of some aggressive media on corrosion resistance of mortars with spend cracking catalyst. Journal of Thermal Analysis and Calorimetry. 2000, vol. 60, núm. 1, pp. 257-264.
  12. FURIMSKY, E. Review of spent refinery catalyst: environment, safety and utilization. Catalysis Today. 1996, vol. 30, núm. 4, pp. 223-293.
  13. RIHM, A.; ARELLANO, J.; SANCHA, A. M. Uso de test de lixiviación para caracterización de residuos del área minera y reflexiones sobre gestión de residuos peligrosos en América Latina. Congreso Interamericano de Ingeniería Sanitaria y Ambiental. 26 (AIDIS 98). Lima, 1-5 noviembre de 1998. CEPIS. -038116. pp.1-8.
  14. EPA. Test Method 1311. Toxicity Characteristic Leaching Procedure (TCLP). Code of Federal Regulations, 40 CFR part 261, appendix II, 1991, <http://www.epa.gov/osw/hazard/testmethods/sw846/ pdfs/1311.pdf>. [Consulta: 14-1- 2013].
  15. EPA. Test Method 1312. Synthetic Precipitation Leaching Procedure (SPLP), 1991. http://www.epa. gov/osw/hazard/testmethods/sw846/pdfs/1312.pdf>. [Consulta: 14-1- 2013].
  16. NNI. Netherlands Normalization Institute. NEN 7341. Leaching characteristics of solid (earthy and stony) building and waste materials. Leaching tests. Determination of the availability of inorganic components for leaching. Delft. 1996.
  17. JUNG-HSIU, W.; WU, W.; HSU, K. The effect of waste oil-cracking catalyst on the compressive strength of cement pastes and Mortars. Cement and Concrete Research. 2003, vol. 33, núm. 2, pp. 245-253.
  18. SU, N.; CHEN, Z.; FANG, H. Reuse of spent catalyst as fine aggregate in cement mortar. Cement and concrete composites. 2011, vol. 23, núm. 1, pp. 111-118.
  19. TSENG, Y.¸ HUANG, Ch.; HSU, K. The pozzolanic activity of a calcined waste FCC catalyst and its effect on the compressive strength of cementitious materials. Cement and Concrete Research. 2005, vol. 32, pp. 782- 787.
  20. FALABELLA, E. Papel das Zeolitas em Catalizadores de Craqueamiento; Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, CYTED. Catalizadores y Absorbentes. Tamices Moleculares; Primer Curso Iberoamericano. Subprograma V. Red Temática VA. 1993.
  21. LEE, W.K.W.; VAN DEVENTER, J.S.J. Use of infrared Spectroscopy to study Geopolimerization of heterogeneous Amorphous Aluminosilicates, Langmuir. 2003, vol. 19, pp. 8726-8734.
  22. PRUD’HOMME, E.; MICHAUD, P.; SOUSSEIN, E.; PEYRATOUT, C.; SMITH, A. ROSIGNOL, S. In situ inorganic foams prepared from various clays at low temperature. Applied Clay Science. 2011, vol. 51, pp. 15–22. Autor, 2012.
  23. CEPIS-OPS. Guía para la definición y clasificación de residuos peligrosos. . [Consulta:20-1-2013]
  24. TREVIÑO, C. New EPA rule will affect spent catalyst management. Oil & Gas Journal. 1998, vol.96, núm. 41, pp. 62–64.
  25. RAPAPORT, D. Are spent hydrocracking catalysts listed hazardous wastes?. Hydrocarbon Processing. 2000, pp. 49–53.
  26. RATTANASAK, U.; JATURAPITAKKUL, C.; SUDAPRASERT, T. Compressive strength and heavy metal leaching behaviour of mortars containing spent catalyst. Waste Management & Research. 2001, vol. 19, núm. 5, pp. 456-464.
  27. SUN, D.; LI, X.; BRUNGS, M.; TRIMM, D. Encapsulation of heavy metals on spent fluid catalytic cracking catalyst, Water Science and Technology. 1998, vol. 38, núm. 4, pp. 211-217.
  28. EPA. Estándares del Reglamento Nacional Primario de Agua Potable. EPA 815-F-00-007, 2000. . [Consulta 3 -2-2013].
  29. WHO. Guidelines for Drinking-water Quality Available, 4a edition, 2011, pp. 541.
  30. Diario oficial de las comunidades Europeas. Estándares Europeos de la calidad del agua potable. Directiva 98/83/EC sobre la calidad del agua destinada a consumo humano. 1998. <http://www.lenntech.es/aplicaciones/ potable/normas/estandares-europeos-calidad-aguapotable.htm#ixzz13C1IJX00>. [Consulta 3-2- 2013].