Vol. 18 No. 2 (2019): Revista UIS Ingenierías
Articles

Review of literature on optimization models in nursing shift programming

Javier Arias-Osorio
Universidad Industrial de Santander
Diana Karina Bautista
Universidad Industrial de Santander
Christian Camilo Meneses-Pico
Universidad Industrial de Santander

Published 2019-03-11

Keywords

  • hospital logistics,
  • optimization models,
  • optimization methods,
  • healthcare,
  • nurse shift scheduling

How to Cite

Arias-Osorio, J., Bautista, D. K., & Meneses-Pico, C. C. (2019). Review of literature on optimization models in nursing shift programming. Revista UIS Ingenierías, 18(2), 245–258. https://doi.org/10.18273/revuin.v18n2-2019023

Abstract

B

Being the nurse shift scheduling an essential component of the quality of the health service and due to the big amount of research conducted regarding the Nurse Scheduling Problem (NSP), a literature review is carried out concerning articles on NSP published from 2003 up to now. As a result of this work, we were able to highlight the tendencies and own needs of this problem, which are characterized by: (1) the need to close the gap between academy and practice through the development of objective models that represent the problem and (2) research about solution techniques capable of processing models of great complexity, without sacrificing the computational resource. This article presents a literature review on optimization models in the NSP published since 2003.

Downloads

Download data is not yet available.

References

S. Aguirre et al., “Logística Hospitalaria: logística hospitalaria”, Cuadernos PYL, vol. 1, pp. 4-11, 2007

B. Cheang et al., “Nurse rostering problems a bibliographic survey”, European Journal of Operational Research, vol. 151, no. 4, pp. 447-460, 2003.

A. Ikegami &, A. Niwa, “A sub problem-centric model and approach to the nurse scheduling problem”, Mathematical Programming, vol. 97, no. 3, pp. 517-541, 2003.

M. Moz y M. Vaz Pato, “An integer multicommodity flow model applied to the rerostering of nurse schedules”, Annals of Operations Research., vol. 119, no. 1-4, pp. 285-301, 2003.

M. Moz y M. Vaz Pato, “Solving the Problem of Rerostering Nurse Schedules with Hard Constraints: New Multicommodity Flow Models”, Annals of Operations Research, vol. 128, no 1-4, pp. 179-197, 2004.

Moz, M. y Vaz Pato, M., ”A genetic algorithm approach to a nurse rerostering problem”, Computers & Operations Research., vol. 343, pp. 667-691, 2007.

Moz, M. y Vaz Pato, M., “Solving a bi-objective nurse rerostering problem by using a utopic Pareto genetic heuristic”, Journal of Heuristics, vol. 144, pp. 259-374, 2008.

J. Li and U. Aickelin, “Bayesian Optimisation Algorithm for Nurse Scheduling”, Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, vol. 17, pp. 315-332, 2006.

U. Aickelin, K. Dowsland, “An indirect Genetic Algorithm for a nurse-scheduling problem” , Computers & Operations Research, vol. Abril, no. 31, pp. 761-778, 2004.

U. Aickelin, & P. White, “Building Better Nurse Scheduling Algorithms”, Annals of Operations Research, vol. 128, pp. 159-177, 2004.

U. Aickelin, & J. Li, “A Bayesian Optimization Algorithm for the Nurse Scheduling Problem”, The 2003 Congress on Evolutionary Computation, IEEE, pp. 2149-2156, 2003.

U. Aickelin, et al., “An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering”, Journal of the Operational Research Society, vol. 58, pp. 1574-1585, 2007.

E., Burke, et al., “Metaheuristics for handling time interval coverage constraints in nurse scheduling”, Applied Artificial Intelligence, vol. 20, pp. 743-766, 2006.

E. K. Burke, et al., “A Scatter Search Approach to the Nurse Rostering Problem”, Engineering, pp. 1–25, 2007.

E. K. Burke, et al. “A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems”, European Journal of Operational Research., vol. 203, no. 2, pp. 484–493, 2010. doi: 10.1016/j.ejor.2009.07.036

E. Burke et al, “Progress control in iterated local search for nurse rostering”, The Journal of the Operational Research Society, vol. 62, no. 62, pp. 360–367, 2011. doi: 10.1057/jors.2010.86

E. Burke et al, “A Pareto-based search methodology for multi-objective nurse scheduling”, Annals of Operations Research, vol.196, no.1, pp. 91–109, 2012. doi: 10.1007/s10479-009-0590-8

E. K. Burke, & T. Curtois, “New approaches to nurse rostering benchmark instances”, European Journal of Operational Research, vol. 2371, pp. 71–81, 2014. doi: 10.1016/j.ejor.2014.01.039

J. Bard, & H. Purnomo, “Cyclic preference scheduling of nurses using a Lagrangian-based heuristic”, Journal of Schedulin, vol. 10, no. 1, pp. 5-23, 2007.

W. Gutjahr & M. Rauner, “ACO algorithm for a dynamic regional nurse-scheduling problem in Austria”, Computers & Operations Research, vol. 343, pp. 642-666, 2007.

A. Dueñas, et al., “A genetic algorithm approach to the nurse scheduling problem with fuzzy preferences”, IMA Journal of Management Mathematics, vol. 20, pp. 369-383, 2008.

M. CHENG, et al., “Analysis of Daily Nursing Care: a Nursing Care Scheduling Algorithm”, The 17th International Symposium on Robot and Human Interactive Communication, Munich., IEEE. pp. 193-200, 2008.

D. Landa et al., “A Simple Evolutionary Algorithm with Self-adaptation for Multi-objective Nurse Scheduling”, Adaptive and Multilevel Metaheuristics, vol. 136, pp. 133-155, 2008.

J. Belien & E. Demeulemeester, “A branch-and-price approach for integrating nurse and surgery scheduling”, European Journal of Operational Research, vol. 1893, pp. 652-668, 2008.

M. Ohki et al., “Parallel Processing of Cooperative Genetic Algorithm for Nurse Scheduling”, Intelligent Systems, IS '08. 4th International IEEE Conference, Varna, IEEE, pp.10-36, 2008.

M. Ohki et al., “A parameter free algorithm of cooperative genetic algorithm for nurse scheduling problem”, International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore, IEEE, pp. 1201-1206, 2013.

G. Kbeddoe et al., “A hybrid metaheuristic case-based reasoning system for nurse rostering”, Journal of Scheduling, vol. 12, no. 2, pp. 99-119, 2009.

M. De Grano et al., “Accommodating individual preferences in nurse Scheduling via auctions and optimization”, Health Care Management Science, vol. 12, no. 3, pp.118-142, 2009.

C. A. Glass & R. A. Knight, “The nurse rostering problem: A critical appraisal of the problem structure”, European Journal of Operational Research, vol. 2022, 379–389, 2009. doi: 10.1016/j.ejor.2009.05.046

S. Topaloglu & H. Selim, ”Nurse scheduling using fuzzy modeling approach”, Fuzzy Sets and Systems, vol. 161, no. 11, pp. 1543–1563, 2010. doi:10.1016/j.fss.2009.10.003

C. Tsai y S. Li, “A two-stage modeling with genetic algorithms for the nurse scheduling problem”, Expert Systems with Applications, vol. 36, pp. 9506-9512, 2009.

C. Tsai & C. Lee, “Optimization of Nurse Scheduling Problem with a Two-Stage Mathematical Programming Model”, Asia Pacific Review, vol. 15, no. 4, pp. 503–516, 2010.

L. Altamirano et al., “A PSO algorithm to solve a Real Anaesthesiology Nurse Scheduling Problem”, International Conference of Soft Computing and Pattern Recognition (SoCPaR),Paris, Francia, IEEE, pp. 139-144, 2010.

R. Bai et al., “A hybrid evolutionary approach to the nurse rostering problem”, en IEEE Transactions on Evolutionary Computation, vol. 14, no. 4, pp. 580–590, 2010. doi:10.1109/TEVC.2009.2033583

P. Brucker et al., “A shift sequence based approach for nurse scheduling and a new benchmark dataset”, Journal of Heuristics, vol. 16, no. 4, pp. 559–573, 2010. doi:10.1007/s10732-008-9099-6

E. Rönnberg & T. Larsson, ”Automating the self-scheduling process of nurses in Swedish healthcare: A pilot study”, Health Care Management Science, vol. 13, no. 1, pp. 35–53, 2010. doi:10.1007/s10729-009-9107-x

B. Maenhout & M. Vanhoucke, “Branching strategies in a branch-and-price approach for a multiple objective nurse scheduling problem”, En Journal of Scheduling, vol. 13, no 1, pp. 77–93. 2010. doi:10.1007/s10951-009-0108-x

B. Maenhout & M. Vanhoucke, “An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems”, Omega United Kingdom, vol. 41, no. 2, pp. 485–499. 2013. doi: 10.1016/j.omega.2012.01.002

Z. Zhang et al., “Hybrid Swarm-Based Optimization Algorithm of GA&VNS for Nurse Scheduling Problem”, Information Computing and Applications, vol. 7030, pp. 375-382, 2011.

A. Mobasher, Nurse Scheduling optimization a general clinic and an operating suite. Houston: University of Houston, 2011.

G. Lim y A. Mobasher, ”Operating Suite Nurse Scheduling Problem: A Heuristic Approach”, Industrial and Systems Engineering Research Conference, Orlando, Florida. 2012.

J. F. Zhou et al., “A Nurse Scheduling Approach Based on Set Pair Analysis”, International Journal of Industrial Engineering-Theory Applications and Practice, vol. 19, no. 9, pp. 359–368, 2012.

F. Yang y W. Wu, “A genetic algorithm-based method for creating impartial work schedules for nurses”, International Journal of Electronic Business Management, vol. 103, pp.182-193, 2012.

E. Yilmaz, “A mathematical programming model for scheduling of nurses labor shifts”, Journal of Medical Systems, vol. 36, no. 2, pp. 491–496, 2012. doi: 10.1007/s10916-010-9494-z

C. Valouxis et al., “A systematic two phase approach for the nurse rostering problem”, European Journal of Operational Research, vol. 219, no. 2, pp. 425–433, 2012. doi: 10.1016/j.ejor.2011.12.042

B. Bilgin et al., “Local search neighbourhoods for dealing with a novel nurse rostering model”, Ann Oper Res., vol. 194, pp. 33–57, 2012. doi:10.1007/s10479-010-0804-0

Z. Lü & J. K. Hao, “Adaptive neighborhood search for nurse rostering”, European Journal of Operational Research, vol. 218, no. 3, pp. 865–876, 2012. doi: 10.1016/j.ejor.2011.12.016

F. He & R. Qu, “A constraint programming based column generation approach to nurse rostering problems”, Computers and Operations Research, vol. 39, no. 12, pp. 3331–3343, 2012. doi:10.1016/j.cor.2012.04.018

S. Martin et al., “Cooperative search for fair nurse rosters”, Expert Systems with Applications, vol. 40. no. 16, pp. 6674–6683, 2013. doi:10.1016/j.eswa.2013.06.019

R. M’Hallah, & A. Alkhabbaz, “Scheduling of nurses: A case study of a Kuwaiti health care unit”, Operations Research for Health Care, vol. 2, no. 1-2, pp. 1–19, 2013. doi: 10.1016/j.orhc.2013.03.003

J. Baeklund, “Nurse rostering at a Danish ward”, Annals of Operations Research, vol. Dec, pp. 1–17, 2013. doi: 10.1007/s10479-013-1511-4

P. D. Wright & S. Mahar, “Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction”, Omega United Kingdom, vol. 41, no. 6, pp. 1042–1052, 2013. doi:10.1016/j.omega.2012.08.004

Jie-Jun et al., “An Ant Colony Optimization Approach For Nurse Rostering Problem”, IEEE International Conference on Systems, Man, and Cybernetics (SMC) Manchester, IEEE, pp.1672-1676, 2013.

M. Ayob et al., “Enhanced harmony search algorithm for nurse rostering problems”, Journal of Applied Sciences, vol. 13, no. 6, pp. 846–853, 2013. doi:10.3923/jas.2013.846.853

N. Todorovic et al., “Bee Colony Optimization Algorithm for Nurse Roster”, IEEE Transactions On Systems, Man, And Cybernetics: Systems, vol. 43, no. 2, pp. 467–73, 2013.

N. Todorovic, y S. Petrovic, “Bee Colony Optimization Algorithm for Nurse Rostering”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 432, pp. 467-473, 2013.

K. Buyukozkan, & A. Sarucan, ”Applicability of artificial bee colony algorithm for nurse scheduling problems”, International Journal of Computational Intelligence Systems, vol. 7, pp. 121-136, 2013.

N. Fabrellas, et al., “A program of nurse algorithm-guided care for adult patients with acute minor illnesses in primary care”, BMC Family Practice, vol. 14, pp. 8-19, 2013.

W. R. Ismail & R. Jenal, “Master plan nurse duty roster using the 0-1 goal programming technique”, AIP Conference Proceedings, vol. 1522, pp. 1394–1400, 2013. doi: 10.1063/1.4801292

C. Lin et al., “Modelling a Nurse Shift Schedule with Multiple Preference Ranks for Shifts and Days Off”, Mathematical Problems in Engineering, vol. 2014, 2014. doi: 10.1155/2014/937842

K. Leksakul & S. Phetsawat, ”Nurse scheduling using genetic algorithm”, Mathematical Problems in Engineering, 2014. doi:10.1155/2014/246543

F. Della Croce, & F. Salassa, ”A variable neighborhood search based matheuristic for nurse rostering problems”, Annals of Operations Research, vol. 21, no. 81, pp. 185–199, 2014. doi:10.1007/s10479-012-1235-x

H. Huang et al., “An evolutionary algorithm based on constraint set partitioning for nurse rostering problems”, Neural Computing and Applications, vol. 253, no. 4, pp. 703-715, 2014. doi :10.1007/s00521-013-1536-2

M. A. Awadallah et al., “Harmony search with novel selection methods in memory consideration for nurse rostering problem”, Asia-Pacific Journal of Operational Research, vol. 31, no. 3, 2014. doi:10.1142/S0217595914500146

M. A. Awadallah et al., “A hybrid artificial bee colony for a nurse rostering problem”, Applied Soft Computing Journal, vol. 35, pp. 726–739, 2015. doi:10.1016/j.asoc.2015.07.004

A. Constantino et al., “A heuristic algorithm based on multi-assignment procedures for nurse scheduling”, Annals of Operations Research, vol. 218, no. 1, pp. 165–183, 2014. doi: 10.1007/s10479-013-1357-9

P. Smet et al., “Modelling and evaluation issues in nurse rostering”, Annals of Operations Research, vol. 218, no. 1, pp. 303–326, 2014. doi:10.1007/s10479-012-1116-3

E. I. Ásgeirsson, “Bridging the gap between self schedules and feasible schedules in staff scheduling”, Annals of Operations Research, vol. 218, no. 1, pp. 51–69, 2014. doi: 10.1007/s10479-012-1060-2

T. C. Wong, et al., “A two-stage heuristic approach for nurse scheduling problem: A case study in an emergency department”, Computers and Operations Research, vol. 51, pp. 99–110, 2014. doi:10.1016/j.cor.2014.05.018

A. Legrain, et al., “The nurse scheduling problem in real-life”, Journal of Medical Systems, vol. 39, no. 1, pp. 160, 2015. doi: 10.1007/s10916-014-0160-8

B. Liang, & A. Turkcan, ”Acuity-based nurse assignment and patient scheduling in oncology clinics”, Health Care Management Science, 2015. doi : 10.1007/s10729-014-9313-z

I. X. Tassopoulos, et al., “A two-phase adaptive variable neighborhood approach for nurse rostering”, Computers and Operations Research, 2015. doi: 10.1016/j.cor.2015.02.009

T. H. Wu, et al., “A particle swarm optimization approach with refinement procedure for nurse rostering problem”, Computers and Operations Research, vol. 54, pp. 52–63, 2015. doi:10.1016/j.cor.2014.08.016

M. Mutingi & C. Mbohwa, “A multi-criteria approach for nurse scheduling fuzzy simulated metamorphosis algorithm approach”, Mutingi, M., & Mbohwa, CIEOM 2015 - 5th International Conference on Industrial Engineering and Operations Management, 2015. doi:10.1109/IEOM.2015.7093904

S. T. Asta, et al., “A tensor based hyper-heuristic for nurse rostering”, Knowledge-Based Systems, vol. 98, pp. 185–199, 2016. doi:10.1016/j.knosys.2016.01.031

Melanie Erhard, Jan Schoenfelder, Andreas Fügener, Jens O. Brunner, “State of the art in physician scheduling”, European Journal of Operational Research, vol. 265, no. 1, pp.1-18, 2018. doi: 10.1016/j.ejor.2017.06.037