Comparison of measurement features used as inputs in a learning-based fault location method for power distribution systems
Published 2019-01-01
Keywords
- fault location,
- measurement features,
- support vector machines,
- attributes,
- distribution systems
How to Cite
Abstract
This paper presents a comparative study of the measurement features used as inputs of a fault locator based on Support Vector Machines, which is aimed to analyze single-phase faults. Studies have shown that a huge database is required to obtain high performance, but a problem is associated with the excessive computing time required to evaluate such databases. This study examines properly these inputs to determine which are the most significant ones in terms of performance. Tests are performed on a 75 bus 34.5 kV distribution system, with 75000 shunt faults, implemented in ATP. According to the results, 12 features related to magnitude variations of phase voltage and current between fault and pre-fault steady states were relevant to achieve a performance of 96.3%, with a computational time of training and cross-validation of approximately six minutes.
Downloads
References
A. Bahmanyar, S. Jamali, A. Estebsari, and E. Bompard “A comparison framework for distribution system outage and fault location methods,” Electr. Power Syst. Res., vol. 145, pp. 19–34, 2017. doi: 10.1016/j.epsr.2016.12.018
I. D. Serna Suárez, G. Carrillo Caicedo, H. R.Vargas Torres, “Revisión de técnicas de estado estable y transitorio para la localización de fallas en sistemas de distribución,” Rev. UIS Ing., Vol. 9, No. 1, pp. 23- 38, 2010.
J. Gutiérrez, J. Mora, S Pérez, “Strategy based on genetic algorithms for an optimal adjust of a support vector machine used for locating faults in power distribution systems,” Rev.Fac.IngUniv. Antioquia, no. 53, pp. 174-187, 2010.
J. Mora-Florez, V. Barrera-Nunez and G. Carrillo-Caicedo, "Fault Location in Power Distribution Systems Using a Learning Algorithm for Multivariable Data Analysis," in IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1715-1721, 2007. doi: 10.1109/TPWRD.2006.883021
J. Mora-Flòrez, J. Meléndez, y G. Carrillo-Caicedo, “Comparison of impedance based fault location methods for power distribution systems,” Electr. Power Syst. Res., vol. 78, no. 4, pp. 657–666, 2008. doi: 10.1016/j.epsr.2007.05.010
A. A. Girgis, C. M. Fallon and D. L. Lubkeman, "A fault location technique for rural distribution feeders," in IEEE Transactions on Industry Applications, vol. 29, no. 6, pp. 1170-1175, 1993. doi: 10.1109/28.259729.
S. Shilpa G, H. Mokhlis, H. Illias, A. H. Abu Bakar, y L. Awalin, “Fault Identification in an Unbalanced Distribution System Using Support Vector Machine”, J. Electr. Syst., vol. 12, no. 4, pp. 786–800, 2016.
V. A. Barrera Núñez, G. Carrillo Caicedo, G. Ordóñez Plata, J. J. Mora Flórez, “Una aplicación de la técnica LAMDA a los índices de continuidad del suministro de energía eléctrica,” Rev. UIS Ing., vol. 5, no. 1, pp. 25-36, 2006.
C. Li, C. Lin, B. Kuo and H. Ho, "An Automatic Method for Selecting the Parameter of the Normalized Kernel Function to Support Vector Machines," 2010 International Conference on Technologies and Applications of Artificial Intelligence, Hsinchu, 2010, pp. 226-232. doi: 10.1109/TAAI.2010.46.
W. Gil, J. Mora, S Pérez, “Analysis of the input data processing for fault location in power distribution systems,” Tecnura, vol. 18, no. 41, pp. 64 – 75, 2014.
D. Arredondo, J. Mora, L. Román, “Exhaustive Search of Input Characteristics to Improve the Performance of Support Vector Machines for Fault Location,” Energética, vol. 44, pp. 69-74, 2014.
D.J. Arredondo, W.J. Gil, J.J. Mora, “Methodology for selection of attributes and operating conditions for SVM-Based fault locator’s,” Tecnura, vol. 21, no. 51, pp. 15-26, 2017.
S. Maldonado, R. Weber, “Modelos de Selección de Atributos para Support Vector Machines,” Rev. Ing. de Sist., vol. 26, pp. 49-70, 2012.
J. A. Cormane Angarita, H. R. Vargas Torres, G. Ordoñez Plata, “Aplicación de mezcla de distribuciones a la localización de fallas en sistemas de distribución de energía eléctrica,” Rev. UIS Ing., vol. 5, No. 1, pp. 49-57, 2006.
G. A. Morales España, H. R. Vargas Torres, J. J. Mora Flórez, “Influencia de la variación en la carga y del tamaño de la zona en la precisión de un localizador de fallas para circuitos de distribución,” Rev. UIS Ing., vol. 6, no. 1, pp. 47-57, 2007.
M. Brunner, G. Nagy, y O. Wilhelm, “A Tutorial on ν-Support Vector Machines,” J. Pers., vol. 80, no. 4, pp. 796–846, 2012. doi: 10.1111/j.1467-6494.2011.00749.x
J. Mora, S Pérez, “Reducción del tamaño de la zona bajo falla para determinar el desempeño de un localizador de fallas basado en vectores de soporte y aplicado a sistemas de distribución,” Rev. Tecnura, vol. 10, no. 20, pp.78–89, 2007.
C. Chih-Chung y L. Chih-Jen, “LIBSVM -- A Library for Support Vector Machines”. [Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/libsvm/. [Accessed: Jul 25, 2017]
J. J. Mora, J. C. Bedoya and J. Melendez, "Extensive Events Database Development using ATP and Matlab to Fault Location in Power Distribution Systems," 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, Caracas, 2006, pp. 1-6. doi: 10.1109/TDCLA.2006.311426
J. Dagenhart, "The 40-ohm ground fault phenomenon," 1999 Rural Electric Power Conference (Cat. No. 99CH36302), Indianapolis, IN, USA, 1999, pp. C4/1-C4/3. doi: 10.1109/REPCON.1999.768690