Vol. 18 No. 2 (2019): Revista UIS Ingenierías
Articles

Computational fluid dynamics in shell and tubes heat exchangers analysis

Laura Isabel Díaz Pinilla
Schlumberger
Leidy Paola Meneses-Prado
Kaplan International
Germán González-Silva
UNIVERSIDAD INDUSTRIAL DE SANTANDER

Published 2019-03-08

Keywords

  • Heat Exchanger,
  • CFD,
  • SST,
  • Thermal Analysis,
  • Shell,
  • Tubes
  • ...More
    Less

How to Cite

Díaz Pinilla, L. I., Meneses-Prado, L. P., & González-Silva, G. (2019). Computational fluid dynamics in shell and tubes heat exchangers analysis. Revista UIS Ingenierías, 18(2), 237–244. https://doi.org/10.18273/revuin.v18n2-2019022

Abstract

The heat exchangers are used frequently in the oil industry to heat, cool, condense or evaporate fluids of services or processes. The most used exchangers are of shell and tube, where the fluids are placed in thermic contact without mixing. In this study, two shell and tube exchangers were used with deflectors inclinations of 0° and 20°. In regard to the cross section, the water flowed through the tubes and a thin hydrocarbon, of great refinery importance, through the shell. The SST and k-e methods were applied to describe the turbulence

Downloads

Download data is not yet available.

References

R. Meroney, R. Ohba, B. Leitl, H. Kondo, D. Grawe, and Y. Tominaga, “Review of CFD guidelines for dispersion modeling,” Fluids, vol. 1, no. 2, p. 14, 2016.

J. McNay and R. Hilditch, “Evaluation of computational fluid dynamics (CFD) vs. target gas cloud for indoor gas detection design,” Journal of Loss Prevention in the Process Industries, vol. 50, pp. 75–79, 2017.

A. L. Delgado-Mejia, L. C. Olmos-Villalba, and S. E. Rivero-Mejia, “Comparative study of the indicated cycle of a diesel engine using simulation CFD and experimental data,” Rev. UIS Ing., vol. 13, no. 1, pp. 23–31, 2014.

G. G. Silva, N. Prieto, and I. Mercado, “Large Eddy Simulation (LES) Aplicado a un lecho fluidizado gas–sólido. Parte I: Reactor a escala de laboratorio,” Rev. UIS Ing, vol. 17, no. 1, pp. 93–104, 2018.

N. P. Jiménez, G. G. Silva, and A. C. Guerrero, “Estudio fluidodinámico de la combustión no premezclada de coque en regeneradores tipo riser usando CFD,” en Conferencia Internacional de Energía Sostenible & Workshop Materiales para Nuevas Tecnologías de Energía – COIES, Bucaramanga, 2017.

G. González, N. P. Jiménez, and O. F. Salazar, “Fluid Dynamics of Gas-Solid Fluidized Beds,” en Advanced Fluid Dynamics, InTech, 2012.

J. G. Ardila-Marín, “Intercambiadores de calor de tubo en espiral,” Rev. UIS Ing, vol. 11, no. 2, pp. 203–213, 2012.

R. N. Pinto, A. Afzal, L. V. D’Souza, Z. Ansari, and A. D. M. Samee, “Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art,” Arch Computat Methods Eng, vol. 24, no. 3, pp. 467–479, 2017.

S. K. Soni, M. Pandey, and V. N. Bartaria, “Ground coupled heat exchangers: A review and applications,” Renewable and Sustainable Energy Reviews, vol. 47, pp. 83–92, 2015.

T. W. I. Clark, G. Isu, D. Gallo, P. Verdonck, and U. Morbiducci, “Comparison of symmetric hemodialysis catheters using computational fluid dynamics,” J Vasc Interv Radiol, vol. 26, no. 2, pp. 252-259.e2, 2015.

N. Paliwal et al., “Methodology for Computational Fluid Dynamic Validation for Medical Use: Application to Intracranial Aneurysm,” J Biomech Eng, vol. 139, no. 12, p. 121004, 2017.

R. Gharibshahi, A. Jafari, and H. Ahmadi, “CFD investigation of enhanced extra-heavy oil recovery using metallic nanoparticles/steam injection in a micromodel with random pore distribution,” Journal of Petroleum Science and Engineering, vol. 174, pp. 374–383, 2019.

F. C. Siqueira, I. S. Farias, D. Moraes Júnior, and A. dos S. Vianna Jr, “CFD simulation of annular oil flow wrapped with water,” The Canadian Journal of Chemical Engineering, 2019.

L. Raynal, F. Augier, F. Bazer-Bachi, Y. Haroun, and C. P. da Fonte, “CFD Applied to Process Development in the Oil and Gas Industry – A Review,” Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, vol. 71, no. 3, p. 42, May 2016.

J. Liu, “The classification of the heat exchangers and theory research,” AIP Conference Proceedings, vol. 1839, no. 1, pp. 020028, May 2017.

J. Smagorinsky, “General circulation experiments with the primitive equations,” Mon. Wea. Rev., vol. 91, no. 3, pp. 99–164, 1963.

R. Zanino, R. Bonifetto, F. Cau, A. Portone, and L. S. Richard, “CFD analysis of the ITER first wall 06 panel. Part II: Thermal-hydraulics,” Fusion Engineering and Design, vol. 89, no. 4, pp. 431–441, 2014.

F. Menter, “Zonal two equation kw turbulence models for aerodynamic flows,” en 23rd Fluid dynamics, plasmadynamics, and lasers conference, 1993, p. 2906.

O. L. P. Galvis, H. R. V. Torres, and J. H. G. Mejía, “Diseño de un sistema de inyección de corriente en pozo (sicp) modelado de la tubería de producción,” Rev. UIS Ing, vol. 7, no. 1, pp. 77–86, 2008.

E. Ozden and I. Tari, “Shell side CFD analysis of a small shell-and-tube heat exchanger,” Energy Conversion and Management, vol. 51, no. 5, pp. 1004–1014, May 2010.

K. T. R. Raj and S. Ganne, “Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD,” Thermal Science, vol. 16, no. 4, pp. 1165–1174, 2012.

M. Barone, F. Barceló, J. Useche, A. Larreteguy, and M. Pagnola, “Análisis y simulación del modelo térmico y viscoso del proceso de melt spinning,” Rev. UIS Ing., vol. 17, no. 1, pp. 167–172, 2018.