State of the art on fracture mechanics in high density polyethylene pipes (HDPE)
Published 2019-08-06
Keywords
- Fracture mechanics,
- Pipes,
- HDPE
How to Cite
Copyright (c) 2019 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The aim of this work is to present a descriptive - documentary research to give an insight into the current situation of experimental studies of fracture mechanics developed in pipes made of HDPE (PE-100 and PE-80). In first place, there are presented the results and main conclusions of the fracture theories used in each investigation. In addition, the techniques used in the last decades for the characterization to elastoplastic fracture of materials with a high degree of ductility, and showing a strong viscoelastic behavior as in the case of HDPE, are summarized. On the other hand, the requirements to perform the experimental tests are specified, as well as the properties of the material (J_IC ,δ_IC ,W_F) obtained and its application in the field of engineering as a fracture criterion. The product of this research allows to demonstrate that in recent years the experimental studies carried out on elastoplastic fracture mechanics for pipes made of HDPE are few and generic, without presenting a complete characterization to interpret the mechanical behavior of these pipes under the presence of cracks or defects in such a way as to provide mechanical properties (K_J-CTOD) that contribute to improving the design processes of the pipes.
Downloads
References
[2] R. R. Machado G, “Análisis a Fatiga para Polietilenos de Alta Densidad utilizados en tuberías,” Universidad Simón Bolívar Venezuela, 2009.
[3] F. Zakar and M. Budinski, “Fracture of a saddle fusion (weld) joint in high density polyethylene (HDPE) pipe,” Eng. Fail. Anal., vol. 82, pp. 481–492, 2017. doi: 10.1016/j.engfailanal.2017.03.009.
[4] M. C. Olmos Rodriguez And L. C. Peláez Lenis, “Plan De Empresa Para La Creación De Recoplast, Empresa Dedicada A La Recuperación De Productos Plásticos Reciclables,” Universidad Autónoma De Occidente, 2018.
[5] Revinca, “Literatura técnica,” Revinca, 2013. . [On line]. Available: http://www.revinca.com/
[6] Polinter, “Polietilenos de Alta Densidad para Tuberías,” Caracas, 2017.
[7] J. P. Freire Triana and V. I. Sánchez Santamaría, “Análisis Comparativo de Rehabilitación de Red de AA.PP., utilizando Tuberías PEAD, PVC, Hierro Dúctil, en Suburbio Oeste.,” Universidad de Guayaquil. Facultad de Ciencias Matemáticas y Físicas. Carrera de Ingeniería Civil., 2018.
[8] A. Adib, C. Domínguez, J. Rodríguez, C. Martín, and R. A. García, “The effect of microstructure on the slow crack growth resistance in polyethylene resins,” Polym. Eng. Sci., vol. 55, no. 5, pp. 1018–1023, May 2015. doi: 10.1002/pen.23970.
[9] D. D. Barboza Elera and D. Rimapa Llanos, “Proyecto de Pre-Factibilidad de instalación de una Planta de Producción Polietileno a Partir de Etileno,” Universidad Nacional Pedro Ruiz Gallo, 2018.
[10] C. Domínguez Vizcaya, “Estudio del proceso de crecimiento lento de grieta en el polietileno de alta densidad para su aplicación en tubería,” Universidad Rey Juan Carlos, 2009.
[11] Hidrofalcón, “Informe de gestión II trimestre,” Estado Falcón, 2012.
[12] H. E. Jaramillo, N. C. Alba, J. P. Cañizales, and A. J. Toro, Introducción a la Mecánica de la Fractura y Análisis de Fallas. Cali: Universidad Autónoma de Occidente, 2008.
[13] O. A. Jiménez Arevalo, “Comportamiento a la fractura de composites con matriz de poliestireno,” Universitat Politècnica de Catalunya (UPC), 2003.
[14] E. Oral, A. S. Malhi, and O. K. Muratoglu, “Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE,” Biomaterials, vol. 27, no. 6, pp. 917–925, Feb. 2006. doi: 10.1016/j.biomaterials.2005.06.025.
[15] M. Parsons, E. V Stepanov, A. Hiltner, and E. Baer, “Effect of strain rate on stepwise fatigue and creep slow crack growth in high density polyethylene,” J. Mater. Sci., vol. 35, no. 8, pp. 1857–1866, 2000. doi: 10.1023/A:1004741713514.
[16] N. Merah, F. Saghir, Z. Khan, and A. Bazoune, “A study of frequency and temperature effects on fatigue crack growth resistance of CPVC,” Eng. Fract. Mech., vol. 72, no. 11, pp. 1691–1701, Jul. 2005. doi: 10.1016/j.engfracmech.2004.12.002.
[17] V. Favier et al., “Slow crack propagation in polyethylene under fatigue at controlled stress intensity,” Polymer (Guildf)., vol. 43, no. 4, pp. 1375–1382, 2002. doi: 10.1016/S0032-3861(01)00701-7.
[18] M. L. Maspoch Rulduà, “Estudio De La Fractura De Materiales Compuestos Por Una Matriz De Plastico Y Partículas Elastomericas,” Universitat Politecnica De Catalunya, 1992.
[19] J. Niglia, C. Bernal, A. Cisilino, and P. Frontini, “Determinación de Parámetros de Mecánica de Fractura en Polietilenos para Tuberías de transportes de fluidos en la industria del Gas y Petróleo,” in Jornadas SAM 2000 - IV Coloquio Latinoamericano de Fractura y Fatiga, 2000.
[20] M. Sánchez Soto, “Comportamiento mecánico y fractura de mezclas de poliestireno y microesferas de vidrio,” Universitat Politècnica de Catalunya, 2000.
[21] D. Ferrer Balas, “Aplicación del Método del Trabajo Esencial de Fractura al estudio de films de Polipropileno y de Copolímeros Propilenos –Etileno en Bloques,” Barcelona, 2001.
[22] G. M. Rojas, M. Rink, and A. J. Müller, “Aplicación Del Trabajo Esencial De Fractura A Copolímeros De Etileno Y A-Olefina De Diversos Porcentajes De Cristalinidad Y Comportamientos MecánicoS ,” Revista Latinoamericana de Metalurgia y Materiales , vol. 22. scielon , pp. 66–72, 2002.
[23] D. R. Moore, J. G. Williams, and A. Pavan, Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites. Elsevier Science, 2001.
[24] I. M. Graice, M. Y. A. Younan, and S. A. R. Naga, “Experimental Investigation Into the Fracture Toughness of Polyethylene Pipe Material,” J. Press. Vessel Technol., vol. 127, no. 1, pp. 70–75, Mar. 2005. doi: 10.1115/1.1845478.
[25] M. Mireya et al., “Propiedades Mecánicas y Comportamiento a Fractura de un Polipropileno Homopolímero comparado con un Copolímero de impacto grado comercial,” Revista Latinoamericana de Metalurgia y Materiales, vol. 25. Scielon, pp. 31–45, 2005.
[26] H. J. Kwon and P.-Y. B. Jar, “Toughness of high-density polyethylene in plane-strain fracture,” Polym. Eng. Sci., vol. 46, no. 10, pp. 1428–1432, Oct. 2006. doi: 10.1002/pen.20603.
[27] H. J. Kwon and P.-Y. B. Jar, “Application of essential work of fracture concept to toughness characterization of high-density polyethylene,” Polym. Eng. Sci., vol. 47, no. 9, pp. 1327–1337, Sep. 2007. doi: 10.1002/pen.20814.
[28] R. Schouwenaars, V. H. Jacobo, E. Ramos, and A. Ortiz, “Slow crack growth and failure induced by manufacturing defects in HDPE-tubes,” Eng. Fail. Anal., vol. 14, no. 6, pp. 1124–1134, 2007. doi: 10.1016/j.engfailanal.2006.11.066.
[29] A. Martinez, P. Artús, J. C. Dürsteler López, and D. Arencon, “Comportamiento a la fractura de materiales para lentes oftálmicas,” in XXV Encuentro del Grupo Español de Fractura, 2008, pp. 269–274.
[30] A. Salazar, J. Rodríguez, O.O. Santana, And A. Martínez, “Influencia De Los Parámetros Estructurales En El Comportamiento A Fractura De Copolímeros En Bloque Etileno-Propileno,” In XXVI Encuentro Del Grupo Español De Fractura, 2009.
[31] H. Ge, G. Singh, and S. C. Mantell, “Fracture behavior of degraded polyethylene thin films for solar thermal applications,” Energy Procedia, vol. 30, pp. 783–792, 2012. doi: 10.1016/j.egypro.2012.11.089.
[32] A. Djebli et al., “Uniaxial Fatigue of HDPE-100 Pipe. Experimental Analysis,” Eng. Technol. Appl. Sci. Res., vol. 4, no. 2, pp. 600–604, Jan. 2014.
[33] F. M. Peres, J. R. Tarpani, and C. G. Schön, “Essential Work of Fracture Testing Method Applied to Medium Density Polyethylene,” Procedia Mater. Sci., vol. 3, pp. 756–763, 2014. doi: 10.1016/j.mspro.2014.06.124.
[34] T. M. A. A. El-Bagory, H. E. M. Sallam, and M. Y. A. Younan, “Evaluation of Fracture Toughness Behavior of Polyethylene Pipe Materials,” in ASME 2014 Pressure Vessels and Piping, 2014, p. 10. doi: 10.1115/PVP2014-28407
[35] J. Zhu, R. P. Collins, J. B. Boxall, R. S. Mills, and R. Dwyer-joyce, “Non-Destructive In-Situ Condition Assessment of Plastic Pipe Using Ultrasound,” Procedia Eng., vol. 119, pp. 148–157, 2015. doi: 10.1016/j.proeng.2015.08.866.
[36] A. Salazar, J. Rodríguez, F. Arbeiter, G. Pinter, and A. B. Martínez, “Fracture toughness of high density polyethylene: Fatigue pre-cracking versus femtolaser, razor sharpening and broaching,” Eng. Fract. Mech., vol. 149, pp. 199–213, 2015. doi: 10.1016/j.engfracmech.2015.07.016.
[37] T. El-Bagory, H. Sallam, and M. Younan, “Validation of Linear Elastic Fracture Mechanics in Predicting the Fracture Toughness of Polyethylene Pipe Materials,” in ASME 2015 Pressure Vessels and Piping Conference, 2015. doi: 10.1115/PVP2015-45651.
[38] T. El-Bagory, T. Alkanhal, and M. Younan, “Effect of Specimen Geometry on the Predicted Mechanical Behavior of Polyethylene Pipe Material,” in ASME 2014 Pressure Vessels and Piping Conference, 2014. doi: 10.1115/PVP2014-28401.
[39] Y. Zhang and P.-Y. Ben Jar, “Comparison of Mechanical Properties Between PE80 and PE100 Pipe Materials,” J. Mater. Eng. Perform., vol. 25, no. 10, pp. 4326–4332, Oct. 2016. doi: 10.1007/s11665-016-2274-2.
[40] G. Márquez, “Estudio de la Mecánica de Fractura de mezclas PEAD/PEUAEM Reciclados,” Universidad Simón Bolívar Venezuela, 2017.
[41] González A. “Comportamiento a la Fractura de Mezclas de PEAD con PEUAEM Reciclados, Universidad Simón Bolívar Venezuela, 2015.
[42] A. Kalantar Mehrjerdi, S. Naudin, and M. Skrifvars, “Development of Polyolefin Compound and Post-Polymerization Treatments for Ground Heat Exchangers,” in IGSHPA Technical/Research Conference and Expo, 2017.
[43] S. Kannappan, Introduction to pipe stress analysis. Wiley, 1986.
[44] R. Goncalves, Introducción al análisis de esfuerzos, 3ra ed. Equinoccio, 2008.
[45] V. Pettarin, P. M. Frontini, and G. E. Eliçabe, “Optimal ligament lengths in impact fracture toughness estimation by the essential work of fracture method,” Polym. Test., vol. 24, no. 2, pp. 189–196, 2005. doi: 10.1016/j.polymertesting.2004.09.003.
[46] A. Frank, W. Freimann, G. Pinter, and R. W. Lang, “A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades,” Eng. Fract. Mech., vol. 76, no. 18, pp. 2780–2787, 2009. doi: 10.1016/j.engfracmech.2009.06.009.
[47] A. Muñoz Rubio, “Tensiones residuales generadas en la zac y su influencia en la tenacidad a la fractura en los aceros de hsla, bajo un proceso de soldeo por arco sumergido,” Universidad de Cádiz, 2009.